
 
 
 

 PRESSURE AND CAPACITY CHANGES IN SLIDE JOURNAL  
BEARING FOR LAMINAR UNSTEADY OIL FLOW  

 
Paweł Krasowski 

 
Gdynia Maritime University  

ul. Morska 81-87, 81-225 Gdynia, Poland 
tel.: +48 58 6901331, fax: +48 58 6901399 

e-mail: pawkras@am.gdynia.pl 
 

Abstract 
 

 This paper presents numerical solutions of the modified Reynolds equation of laminar unsteady lubrication in 
a cylindrical slide journal bearing. Laminar, unsteady oil flow is performed during periodic and unperiodic 
perturbations of bearing load or is caused by the changes of gap height in the time. Above perturbations occur during 
the starting and stopping of machine. The particular solutions are limited to the isothermal models of bearing with 
infinite length and lubricated by Newtonian oil with the dynamic viscosity dependent on pressure. The disturbances 
are related to the unsteady velocity of oil flow on the sleeve and on the surface Diagram shows the  results of 
hydrodynamic pressure and capacity forces in the dimensionless form in time intervals of displacement duration. 
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1. Introduction 
 
     This article refers to the unsteady, laminar flows issue, in which [4,5] modified Reynolds 

number Re*=Reψ is smaller than 2 or Taylor number Ty=Reψ   is smaller than 41,1. Laminar, 

unsteady oil flow is performed during periodic and  unperiodic perturbations of bearing load or is 
caused by the changes of gap height in the time. In this article following problems were also 
mentioned: lubricated oil disturbance velocity on the pin and on the bearing shell. Velocity 
perturbations of oil flow on the pin, are caused by torsion vibrations during the rotary movement 
of the shaft. Perturbations are proportional to torsional vibration amplitude and to pin radius of the 
shaft. Oil velocity perturbations on the shell surface can be caused by rotary vibration of the shell 
together with bearing casing. This movement can be consider as kinematic constraint for whole 
bearing friction node. Isothermal bearing model can be approximate to bearing operation in 
friction node under steady-state thermal load conditions for example bearing in generating set on 
ship. In considered model flow [1,5,6] we assume small unsteady disturbances and accordingly to 

the laminar flow,  oil velocity Vi
* and pressure p1

* are sum of time dependent quantities iV
~

; 1
~p  

and time independent quantities 1; pVi  from time [1,2,3] in following form:   
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     Unsteady components of dimensionless oil velocity and pressure we show [1,5] in following 
form of infinite series :  
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where:  
 
ω0 – angular velocity perturbations in unsteady flow, 

 j   -  imaginary unit:  j = 1− .   
 
Reynolds equation describing total dimensionless pressure p1

* (sum steady and unsteady 
components) in oil journal bearing gap [1,2] by unsteady, laminar, isotherm Newtonian flow along 
with disturbances of peripheral velocity V10 on the journal and V1h on the sleeve and disturbances 
of  velocity on journal length V30 on the journal and V3h  on the sleeve has following form: 
 

          

( ) ( )

( )[ ] ( )[ ]

( )[ ] ( )[ ] ∑

∑

∞

=

∞

=

∗
∗

∗
∗


















∂
∂+

∂
∂−+

∂
∂++

∂
∂−

+








+
∂
∂++

∂
∂+

∂
∂=

=

















∂
∂−−

∂
∂

∂
∂+


















∂
∂−−

∂
∂

∂
∂

11

1
32

1

1
13301

1
2
1

1101

1
330

3
1

1
2
1

110
3
1

*

1

11

1

1
11

1

1
3

1

1
2
1

1
11

1
3

1

1
2

1
6 

1
Re

2
1

6  

)(1)(
11

k
khhhh

k
khh

KpKp

B
z

h
V

L

h
VVVh

zL
VVh

AVVh
zL

VVhn
h

z

p
ppK

z

p

e

h

zL

p
ppK

p

e

h

ϕϕ

ϕη
ρ

ϕ

ϕϕϕ

         (3) 

 

where   )t;z;(pp  ; tt0  ; 1z1- ;  hr0   ; 0 1111k11p11e ϕ=≤≤≤≤≤≤ϕ≤ϕ≤ ∗∗
 

 
    Components of oil velocity Vϕ ,Vr ,Vz in cylindrical co-ordinates r,φ,z have presented as V1 ,V2 ,   
V3 in dimensionless form:   
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Dynamic oil viscosity η is depended on pressure by Barrus formula [1] and has following form: 
 

                                       ( )
1000 ηηηηη αα =≈= − ppp ee a                                                        (5)    

where: 
 
ηo- the  dynamic  oil viscosity for atmospheric pressure  p= pa≈ 0   
η – the dynamic oil viscosity function,  
α – the pressure influence piesocoefficient of the oil viscosity ,  
η1 – dimensionless dynamic viscosity depending on pressure η1=exp(αp). 

 
     Parameter K characterize dimensionless oil dynamic viscosity change caused by pressure( if 
K=0 dynamic oil viscosity is constant and independent from pressure): 
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where: 
 
p0 - characteristic value of pressure   



     Sum for series ∑
∞

=1k
kA and ∑

∞

=1k
kB in right hand side of Reynolds equation (3) are results from 

conservation of the momentum solutions and were define in work [1,2]. Nomenclature has been 
placed in the end of the paper. Specific explanation to above Reynolds equation were define in 
works [1,2,3]. Quantity of oil peripheral velocity perturbations on the whirling pin surface with ω 
velocity caused by forced torsion vibration of shaft with the angular velocity ωo  and angular 
amplitude φ0  can be present  in the following dimensionless form:  
 

nV 010 ϕ=  ,              
ω
ω0=n ,                                                      ( 7) 

                                                                              
In this torsion vibrations case of engine, n number depend on the cylinder number c and on engine 
type: two-stroke (s=2) or four-stroke (s=4):  
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Rest of the symbols and quantities which apply to Reynolds equation (3) have been precisely 
define and describe in work [1,2,3].  
  
2. Pressure distributions  
 
     The equation solution (3) for bearing with infinity length determine total dimensionless 
hydrodynamic pressure function in following [2,3] (K>0) form:   
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                                 for               )t;(pp         , tt0       , 0 111k1 ϕϕϕ ∗∗ =≤≤≤≤ e  
    
Pressure p10 is located in the oil gap by steady flow and by constant oil dynamic viscosity (K=0):  
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Dimensionless total pressure by disturb flow and by constant oil dynamic viscosity independent 
from pressure (K=0):  
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Disturbance pressure in unsteady flow part can be presented with common formula for constant 
(K=0) and variable dynamic viscosity ( )0≥K  :         
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Presented equations (9),(11),(12), which describe total pressure course and perturbation pressure 
course, have following conclusions: pressure in dependence on velocity perturbations quantity V1 

and on direction with relation to pin peripheral velocity U. In this equations, two components 
occur in dependence on the sum and on the difference of velocity perturbations on the pin and on 
the bearing shell. That is way in presented graphs characteristic cases of perturbations with 
different and equal values were shown.  
Numerical calculation results are presented by following tangential velocity perturbations:  

1.  velocity perturbations on the journal V10=0,05 and on the sleeve V1h=0, 
2. velocity perturbations on the journal V10=0,05  and on the sleeve V1h=0,025, 
3. velocity perturbations on the journal V10=0,05  and on the sleeve V1h=0,05, 
4. velocity perturbations on the journal V10=0,05  and on the sleeve V1h=-0,05 

 

     In numerical calculation example, oil with constant density was assume, equivalent to quantity 
ρ1=1.  In  presented calculation way an expression value is assumed  nρ1Re* = 12, what is 
approximately equivalent to force over first frequency torsion vibrations force of  six cylinder 
engine shaft. This take place by laminar unsteady flow. Time of reference to is a period of velocity 
disturbances dispersion. Examples apply to bearing with constant dependent eccentricity λ=0,6. 
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Fig.1. Pressure distributions 1

~p  in place ϕ=145° in the time t1 for constant oil viscosity 

(K=0) and for oil viscosity in dependence on pressure  (K=0,1) by velocity perturbations: 
     1)V10=0,05; V1h=0;  2) V10=0,05; V1h=0,025; 3) V10=0,05; V1h=0,05; 4) V10=0,05; V1h=-0,05 

 
 Unsteady pressure is changing due velocity perturbations time and it is in function of time and 
position on the journal. It is a periodic function with the following lasting period of velocity 
perturbation. Pressure perturbation course in point φ=145˚ on the journal surface in dimensionless 
time function in case of velocity perturbation on the journal  and on the sleeve is presented by four 
variant on Fig. 1. Above graphs are made for constant viscosity and for viscosity in dependence on 
pressure where K=0,1. When oil velocity perturbations on the journal are compatible to journal 



tangential velocity, the perturbation pressure increase, otherwise the pressure decrease. In this case 
decrease is considerably bigger than increase and it last shorter than half of perturbation period. In 
case of velocity perturbation on the sleeve it is opposite. There is a lack of graphs for this example. 
Periods of pressure increase and decrease are non-symmetrical in case of different perturbation 
velocity values (graph 2). When perturbations velocity values are equal and directions are the same 
or opposite then the perturbation pressure is symmetrical in time ( graph 3 and 4, Fig.1). Pressure 
perturbation distribution by wrapping angle is changing in time, giving in different time periods 
maximal or minimal pressure. Maximal and minimal pressure distribution in considered velocity 
perturbation examples are presented on Fig.2. In order to compare influence of viscosity variable 
in dependence on pressure (graph b),pressure distribution for oil with constant viscosity ( K=0 ) 
which is independent from pressure, were plotted (graph a).  In case where velocity perturbations 
on the pin and on the bearing shell have the same signs and pressure, perturbations values are 
maximum (graph 3). When viscosity is in dependence of pressure it  causes an increase of steady 
pressure and perturbation pressure on both maximal and minimal pressure sides. Steady pressure 
flow sum up with perturbation pressure and total distribution of maximal and minimal pressure by 
bearing wrapping angle is received. This are the border pressure distribution for given type of 
perturbation. 
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Fig.2. Unsteady part maximal and minimal pressure distributions 1
~p in direction ϕ  a) for constant 

oil viscosity  (K=0), b) for oil viscosity in dependence on pressure (K=0,1) by  velocity perturbations 
1) V10=0,05; V1h=0;  2) V10=0,05; V1h=0,025. 3) V10=0,05; V1h=0,05;4)  V10=0,05; V1h=-0,05 

 
3. Capacity forces 
 
     Capacity force W for cylindrical slide journal bearing has following components Wx and Wy  to 
be determined [2,5] in the local co-ordinate systems in Fig. 3. Thus dimensionless components 
W1x and W1y   of capacity forces W1 are as follows [2]: 
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where:   
 
W0 - characteristic value of capacity force W0 ≡ 2Rbp0 , 
So – Sommerfeld Number for slide journal bearing. 
 
   
 
 
 
 
 
                

 
 
 
 
 
 
 

                   
 

Fig. 3 Capacity force W and components Wx and Wy in the local co-ordinate system 
 
Hydrodynamic capacity force change caused by the pressure perturbation is calculate from:  
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                   Fig.4. The dimensionless capacity forces *

1W  of slide journal bearing in the time t1 by velocity 

perturbations:1) V10=0,05; V1h=0;2) V10=0,05; V1h=0,025;3) V10=0,05; V1h=0,05;4) V10=0,05; V1h=-0,05 



Pressure in the bearing during the perturbation is a total of stationary flow pressure and 
perturbation pressure according to (1). According to mentioned equation (2) if we provide 
stationary flow pressure p1 we will obtain capacity force W1. On the other hand if we provide 
summary pressure *1p  we will receive capacity force *

1W as a result of this distribution. 

Figure 4 presents hydrodynamic capacity *1W  in the time function t1 for perturbation velocities 
cases marked with graphs 1,2,3,4. Figure 4 also presents capacity calculation results for oil with 
constant viscosity (K=0). Capacity force in stationary flow is marked by horizontal lines with dots. 
Hydrodynamic capacity force *

1W  changes periodically with a period equal to perturbation 
velocity. In case of velocity perturbation in the bearing pin, increase of capacity force above the 
stationary condition value last no longer than half of the perturbation period and the increase of 
capacity force is bigger than the decrease in the remaining time. When perturbation of velocity on 
the bearing pin is in the same direction as a peripheral velocity of the pin it causes then bigger 
increase of capacity force than decrease. It is opposite in case of oil peripheral velocity 
perturbation on the shell surface, but his diagrams are not presented in his article. The case 2 
effects are shown on the diagram 4. Capacity force course in time is not symmetrical for different 
perturbation of velocity quantities on the pin and on the shell. . Presented modification of 
dimensionless capacity force *1W  illustrate also a change of Sommerfeld Number So in the bearing 
node model.  
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Fig.5. The dimensionless capacity forces 1

~
W   of slide journal bearing in the time t1 by velocity 

perturbations:1) V10=0,05; V1h=0; 2) V10=0,05; V1h=0,025 3) V10=0,05;V1h=0,05; 4) V10=0,05; V1h=-0,05 
 
Capacity force W* is situated in the co-ordinate angle φw  from a angle φ=0 calculated for film 
origin (Fig. 3):    
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Figure 6 presents contact angle of a bearing hydrodynamic capacity force in dimensionless time 
function t1 in four considered perturbation of velocity cases marked same as before. By stationary 
flow angle is marked with dot line φw angle defines capacity force position changes periodically 



and the period is equal to perturbation of velocity period. In all considered cases of perturbation 
velocity the φw angle change in time is not bigger than four degrees. Only in case 4 (graph 4 Fig.6) 
for oil with constant viscosity the position angle is uniform (constant).  Capacity force angle 
change for viscosity in dependence on pressure is insignificant comparing to change with constant 
viscosity and equals below one degree. Viscosity dependence on pressure causes angle φw increase 
for stationary flow.  
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Fig. 6. Angle φw  situated capacity force *

1W in slide journal bearing in the time t1 by velocity perturbations:  

1) V10=0,05; V1h=0  2) V10=0,05; V1h=0,025. 3) V10=0,05; V1h=0,05; 4) V10=0,05; V1h=-0,05 
 
5. Conclusions 
 
Unsteady perturbation of velocity on the journal and the sleeve have influence on the 
hydrodynamic pressure distribution and the hydrodynamic capacity forces in the lubricated gap. 
The influence is stronger when the oil viscosity depends stronger on pressure. Summary pressure,  
perturbation pressure change and capacity forces are periodical equal to perturbation of velocity 
period and the size of change depends on perturbation of velocity. When the perturbation of 
velocity on the journal has the same direction as peripheral velocity of the pin then the 
perturbation pressure is positive. When the peripheral velocity is in the opposite direction then the 
perturbation pressure is negative and it decrease summary pressure. Pressure increase and decrease 
is not symmetrical during the perturbation time. Although presented case consider isothermal 
bearing model with infinity width the results can be useful in preliminary pressure distribution 
estimation by laminar unsteady lubrication of cylindrical journal bearings with infinity width. 
Presented results will going to be used as a comparison quantities in case of laminar unsteady flow 
of Non-Newtonian fluids in cylindrical bearing gap. 
 
Notation 
 
b  -  length of the journal  
ε  -  eccentricity  
h  -  gap height  h = ε h1 

h1  -  dimensionless gap height  h1 = 1+ λ cosφ 



L1  -  dimensionless bearing length 
R

b=1L   

p    -  hydrodynamic pressure  p = p0 p1 

po   -  characteristic value of pressure   
p1   -  dimensionless hydrodynamic steady pressure  

*
1p   -  dimensionless hydrodynamic summary pressure  

1
~p   -  dimensionless hydrodynamic unsteady pressure  

r     -  radial co-ordinate  ( )11 rRr ψ+=  
r1    -  dimensionless radial co-ordinate 
R    -  radius of the journal  

Re  -  Reynolds  Number  
R

U

0

0Re
η

ερ=  

Re* -  modified Reynolds  Number  Re* = Reψ 
So    - Sommerfeld Number for slide journal bearing 
t     -   time t = t0 t1 

to    -  characteristic value of time 
t1    -  dimensionless time  

Ty  -  Taylor Number   Ty = Reψ  

 U   -  peripheral journal velocity U = ω R 
V10 -  dimensionless velocity of perturbation in direction φ on the journal   
V1h -  dimensionless velocity of perturbation in direction φ on the sleeve 
V30 -  dimensionless velocity of perturbation in direction z on the journal   
V3h -  dimensionless velocity of perturbation in direction z on the sleeve 
W0  -  characteristic value of capacity force W = 2Rbp0 

W  -  capacity force  W = W0 W1 
W1 -  dimensionless capacity force 
Wx , Wy - components of capacity force W 
W1x , W1y -  dimensionless components of capacity force W1 

z  -    co-ordinate in length of the journal  z = b z1 
z1 -   dimensionless  co-ordinate in length of the journal    
ε  -    radial clearance  
η  -   dynamic oil viscosity  10ηηη =  

ηo -   characteristic value of dynamic oil viscosity  
η1 -   dimensionless dynamic oil viscosity 
λ  -   dimensionless eccentricity ratio  
ρ  -   oil density    10ρρρ =  

ρo -   characteristic oil density  
ρ1  -   dimensionless oil density 
φ0 -   the angular amplitude torsional forced vibrations of the shaft   
φe  -   the angular co-ordinate for the film end  
φw -   the angular co-ordinate situated capacity force  

 ψ  -   dimensionless radial clearance   ; 
R

εψ =     34 1010 −− ≤ψ≤  

ω  -   angular journal velocity  
ωo -   angular velocity of perturbations 
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