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Abstract

This paper presents numerical solutions of the modified Reynolds equation of laminar unsteady lubrication in
a cylindrical dide journal bearing. Laminar, unsteady oil flow is performed during periodic and unperiodic
perturbations of bearing load or is caused by the changes of gap height in the time. Above perturbations occur during
the starting and stopping of machine. The particular solutions are limited to the isothermal models of bearing with
infinite length and lubricated by Newtonian oil with the dynamic viscosity dependent on pressure. The disturbances
are related to the unsteady velocity of oil flow on the sleeve and on the surface Diagram shows the results of
hydrodynamic pressure and capacity forcesin the dimensionless formin time intervals of displacement duration.
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1. Introduction

This article refers to the unsteady, laminaw$ issue, in which [4,5] modified Reynolds
number Re=Rey is smaller than 2 or Taylor number Ty:@ is smaller than 41,1. Laminar,

unsteady oil flow is performed during periodic andperiodic perturbations of bearing load or is
caused by the changes of gap height in the timehigarticle following problems were also
mentioned: lubricated oil disturbance velocity dre tpin and on the bearing shell. Velocity
perturbations of oil flow on the pin, are causedtdmgion vibrations during the rotary movement
of the shaft. Perturbations are proportional tgitoral vibration amplitude and to pin radius of the
shaft. Oil velocity perturbations on the shell sgd can be caused by rotary vibration of the shell
together with bearing casing. This movement camdresider as kinematic constraint for whole
bearing friction node. Isothermal bearing model ¢en approximate to bearing operation in
friction node under steady-state thermal load domts for example bearing in generating set on
ship. In considered model flow [1,5,6] we assumalsomsteady disturbances and accordingly to

the laminar flow, oil velocity V and pressure;pare sum of time dependent quantit\@,s P
and time independent quantitigs p; from time [1,2,3] in following form:
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Unsteady components of dimensionless oil vgland pressure we show [1,5] in following
form of infinite series :
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where:

o — angular velocity perturbations in unsteady flow,
] - imaginary unit: j=/-1.

Reynolds equation describing total dimensionlesssqre p (sum steady and unsteady
components) in oil journal bearing gap [1,2] byteasly, laminar, isotherm Newtonian flow along
with disturbances of peripheral velocityon the journal and ) on the sleevand disturbances
of velocity on journal length ¥4 on the journal and 3 on the sleeve has following form:
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where 0<s$<¢_; O<r,<h ;-1<z <1;0<t <t,; p,=p/($;z,;t,)
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Components of oil velocity,V, ,V; in cylindrical co-ordinates¢,z have presented ag Wo,
V3 in dimensionless form:

Vv, = uv,” \VA/S\VAS V, ==V, 4
Dynamic oil viscosityy is depended on pressure by Barrus formula [1]resdfollowing form:

n =" = ne® =ny (5)
where:

No- the dynamic olil viscosity for atmospheric press p= p=0

n — the dynamic oil viscosity function,

a — the pressure influence piesocoefficient of tih@iscosity ,

N1 — dimensionless dynamic viscosity depending osqunen;=exp@p).

Parameter K characterize dimensionless oilanyno viscosity change caused by pressure( if
K=0 dynamic oil viscosity is constant and indeperideom pressure):

U
K=ap, Py = ‘/’QI?Q (6)

where:

Po - characteristic value of pressure



Sum for serleszA and ZB in right hand side of Reynolds equation (3) arsults from
k=1

conservation of the momentum solutions and wereédeh work [1,2]. Nomenclature has been
placed in the end of the pap&pecific explanation to above Reynolds equationewdsfine in
works [1,2,3]. Quantity of oil peripheral velociperturbations on the whirling pin surface with
velocity caused by forced torsion vibration of g$hafth the angular velocityy, and angular
amplitudego can be present in the following dimensionless form

(79
Vio = &N n:EO’ (7)

In this torsion vibrations case of engine, n nundegrend on the cylinder number ¢ and on engine
type: two-stroke (s=2) or four-stroke (s=4):

cC s=2
=18 =4 (8)
Rest of the symbols and quantities which apply &yr®lds equation (3) have been precisely

define and describe in work [1,2,3].

2. Pressure distributions

The equation solution (3) for bearing with infinitgngth determine total dimensionless
hydrodynamic pressure function in following [2,8>0) form:
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Pressure g3 is located in the oil gap by steady flow and bgistant oil dynamic viscosity (K=0):

h@)-h,
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for 0<¢<g,
Dimensionless total pressure by disturb flow andcbgstant oil dynamic viscosity independent

from pressure (K=0):

P (#) =P+ ,01 Re n(Vlo +V1h{¢ hle_[ hl¢jZA< + plo(vlh Vlo)i B, . (12)

Disturbance pressure in unsteady flow part canrbegmted with common formula for constant
(K=0) and variable dynamic viscosi(}( > O) :
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Presented equatior{9),(11),(12), which describe total pressure cownse perturbation pressure
course, have following conclusions: pressure ineddpnce on velocity perturbations quantity V
and on direction with relation to pin peripheralogity U. In this equations, two components
occur in dependence on the sum and on the differehgelocity perturbations on the pin and on
the bearing shell. That is way in presented gragieracteristic cases of perturbations with
different and equal values were shown.
Numerical calculation results are presented bywalhg tangential velocity perturbations:

1. velocity perturbations on the journalp¥0,05 and on the sleeve 0,

2. velocity perturbations on the journalg¥0,05 and on the sleevg 0,025,

3. velocity perturbations on the journalp¢0,05 and on the sleeve#0,05,

4. velocity perturbations on the journalo¥0,05 and on the sleevg#-0,05

In numerical calculation example, oil with stemt density was assume, equivalent to quantity
p1=1. In presented calculation way an expression vatuassumed mRe* = 12, what is
approximately equivalent to force over first fregag torsion vibrations force of six cylinder
engine shaft. This take place by laminar unsteémly.fTime of reference,tis a period of velocity
disturbances dispersion. Examples apply to beavittgconstant dependent eccentricity0,6.
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Fig.1. Pressure distributions p, in place ¢=145 °in thetimet, for constant oil viscosity
(K=0) and for oil viscosity in dependence on pressure (K=0,1) by velocity perturbations:
1)V10= 0,05; Vin= 0; 2) Vip= 0,05; Vin= 0,025; 3) Vip= 0,05; Vin= 0,05; 4) Vip= 0,05; Vin= -0,05

Unsteady pressure is changing due velocity pertianioa time and it is in function of time and
position on the journallt is a periodic function with the following lastinperiod of velocity
perturbation. Pressure perturbation course in psid#5° on the journal surface in dimensionless
time function in case of velocity perturbation twe journal and on the sleeve is presented by four
variant on Fig. 1. Above graphs are made for canistigcosity and for viscosity in dependence on
pressure where K=0,1. When oil velocity perturbation the journaare compatible to journal



tangential velocity, the perturbation pressureaase, otherwise the pressure decrease. In this case
decrease is considerably bigger than increasetdast ishorter than half of perturbation period. In
case of velocity perturbation on the sleeve itgpasite. There is a lack of graphs for this example
Periods of pressure increase and decrease areynonedrical in case of different perturbation
velocity values (graph 2)Vhen perturbations velocity values are equal anections are the same
or opposite then the perturbation pressure is syimcakin time ( graph 3 and 4, Fig.1). Pressure
perturbation distribution by wrapping angle is ajiag in time, giving in different time periods
maximal or minimal pressure. Maximal and minimatgsure distribution in considered velocity
perturbation examples are presented on Fig.2.derdo compare influence of viscosity variable
in dependence on pressure (graph b),pressurebdigom for oil with constant viscosity ( K=0 )
which is independent from pressure, were plottedplg a). In case where velocity perturbations
on the pin and on the bearing shell have the sagms @nd pressure, perturbations values are
maximum (graph 3). When viscosity is in dependerfceressure it causes an increase of steady
pressure and perturbation pressure on both mavandhiminimal pressure sides. Steady pressure
flow sum up with perturbation pressure and totatrdbution of maximal and minimal pressure by
bearing wrappingngle is received. This are the border pressuteildiion for given type of
perturbation.

Fig.2. Unsteady part maximal and minimal pressure distributions 51in direction ¢ a) for constant
oil viscosity (K=0), b) for oil viscosity in dependence on pressure (K=0,1) by velocity perturbations
1) V10=0,05; V1p=0; 2) V10=0,05; V11,=0,025. 3) V;,=0,05; V11=0,05;4) V1,=0,05; V;,=-0,05

3. Capacity forces

Capacity force W for cylindrical slide journal bewy has following components Wénd W, to
be determined [2,5] in the local co-ordinate systemFig. 3. Thus dimensionless components
Wi, and Wy of capacity forces Ware as follows [2]:
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where:

Wy - characteristic value of capacity forcey¥W2Rbp ,
S, — Sommerfeld Number for slide journal bearing.

Fig. 3 Capacity force W and components W, and W, in the local co-ordinate system

Hydrodynamic capacity force change caused by tegspire perturbation is calculate from

W =W -V (14)
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Fig.4. The dimensionless capacity forces V\/1 of didejournal bearing in thetimet; by velocity
perturbati ons: 1) V10=0,05; V11,=0; 2) V10=0,05; V;,1=0,025; 3) V10=0,05; V;1=0,05; 4) V10=0,05; V44,=-0,05



Pressure in the bearing during the perturbatiora isotal of stationary flow pressure and
perturbation pressure according to (1). Accordingnientioned equation (2) if we provide
stationary flow pressure;pve will obtain capacity force WOnN the other hand if we provide

summary pressur@, we will receive capacity forc#, as a result of this distribution.

Figure 4 presents hydrodynamic capadity in the time functiontfor perturbation velocities

cases marked with graphs 1,2,3,4. Figure 4 alssepts capacity calculation results for oil with
constant viscosity (K=0). Capacity force in statipnflow is marked by horizontal lines with dots.
Hydrodynamic capacity forca\, changes periodically with a period equal to pertidn
velocity. In case of velocity perturbation in thealbing pin, increase of capacity force above the
stationary condition value last no longer than ludlthe perturbation period and the increase of
capacity force is bigger than the decrease ing¢h®gming time. Wheperturbation of velocity on
the bearing pin is in the same direction as a pergd velocity of the pin it causes then bigger
increase of capacity force than decrease. It isosipp in case of oil peripheral velocity
perturbation on the shell surface, but his diagrames not presented in his article. The case 2
effects are shown on the diagram 4. Capacity foorgse in time is not symmetrical for different
perturbation of velocity quantities on the pin aod the shell.. Presented modification of

dimensionless capacity for&#, illustrate also a change of Sommerfeld Number Sbénbearing
node model.
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Fig.5. The dimensionless capacity forces VT/l of slide journal bearing in the time t; by velocity
perturbations:1) V;0=0,05; V1,=0; 2) V;10=0,05; V1,=0,025 3) V;0=0,05;V;,=0,05; 4) V;,=0,05; V1,=-0,05

Capacity force Wis situated in the co-ordinate anglg from a anglep=0 calculated for film
origin (Fig. 3):
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Figure 6 presents contact angle of a bearing hyaauic capacity force in dimensionless time
function t in four considered perturbation of velocity casemrked same as before. By stationary
flow angle is marked with dot lin@, angle defines capacity force position changes gieddly



and the period is equal to perturbation of veloggyiod. In all considered cases of perturbation
velocity theg,, angle change in time is not bigger than four degrémly in case 4 (graph 4 Fig.6)
for oil with constant viscosity the position angte uniform (constant). Capacity force angle
change for viscosity in dependence on pressurgsignificant comparing to change with constant
viscosity and equals below one degree. Viscosipeddence on pressure causes apgliecrease
for stationary flow.
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Fig. 6. Angle ¢,, situated capacity force V\/1 in didejournal bearing in the time t; by velocity perturbations:
1) Vio= 0,05; V1h=0 2) Vio= 0,05; Vin= 0,025. 3) Vip= 0,05; V1= 0,05; 4) Vip= 0,05; Vin= -0,05

5. Conclusions

Unsteady perturbation of velocity on the journaldathe sleeve have influence on the
hydrodynamic pressure distribution and the hydradyic capacity forces in the lubricated gap.
The influence is stronger when the oil viscositpelgds stronger on pressure. Summary pressure,
perturbation pressure change and capacity foreepenodical equal to perturbation of velocity
period and the size of change depends on pertarbati velocity. When the perturbation of
velocity on the journal has the same direction asipperal velocity of the pin then the
perturbation pressure is positive. When the pergdheslocity is in the opposite direction then the
perturbation pressure is negative and it decraa®sengairy pressure. Pressure increase and decrease
is not symmetrical during the perturbation timethdugh presented case consider isothermal
bearing model with infinity width the results cae hbseful in preliminary pressure distribution
estimation by laminar unsteady lubrication of cglical journal bearings with infinity width.
Presented results will going to be used as a casgraquantities in case of laminar unsteady flow
of Non-Newtonian fluids in cylindrical bearing gap.

Notation

b - length of the journal

€ - eccentricity

h - gap height hsh

h; - dimensionless gap height h1+X cosp



L; - dimensionless bearing length =%

p - hydrodynamic pressure p &R
Po - characteristic value of pressure
p. - dimensionless hydrodynamic steady pressure

p, - dimensionless hydrodynamic summary pressure
p, - dimensionless hydrodynamic unsteady pressure
r - radial co-ordinate = R(1+yr,)

r. - dimensionless radial co-ordinate

R - radius of the journal

Up,e

o

Re* - modified Reynolds Number Re Rey

Sy - Sommerfeld Number for slide journal bearing
t - timet=4t;

to - characteristic value of time

ty - dimensionless time

Ty - Taylor Number Ty = Ré@

U - peripheral journal velocity Us R

V10- dimensionless velocity of perturbation in dtreo ¢ on the journal
Vin - dimensionless velocity of perturbation in direc ¢ on the sleeve
V30 - dimensionless velocity of perturbation in dtreo z on the journal
V3h - dimensionless velocity of perturbation in diren z on the sleeve
W, - characteristic value of capacity force W = 2Rbp

W - capacity force W = WW;

W; - dimensionless capacity force

Wy , Wy - components of capacity force W

Wiy, Wiy - dimensionless components of capacity forge W

z - co-ordinate in length of the journal z zb

z; - dimensionless co-ordinate in length of therfal

e - radial clearance

n - dynamic oil viscosityn =147,

No - Characteristic value of dynamic oil viscosity

N1 - dimensionless dynamic oil viscosity

A - dimensionless eccentricity ratio

p - oildensity p=p,0

po - Characteristic oil density

p1 - dimensionless oil density

¢o - the angular amplitude torsional forced vilwas of the shaft

@e - the angular co-ordinate for the film end

ow - the angular co-ordinate situated capacitydorc

Re - Reynolds NumbeRe=

vy - dimensionless radial clearanag = %; 10*<Pp<10

® - angular journal velocity
0o - angular velocity of perturbations
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