PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A design of DSS for mass production machining systems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we present a decision support tool (DSS) for preliminary design of transfer machines with rotary or mobile tables. In these transfer machines, the machining operations are executed on working positions equipped by standard multi-spindle heads. A part is sequentially machined on m working positions and is moved from one position to the next using a rotary or a mobile table. The operations are grouped into blocks, where the operations of the same block are simultaneously performed by one multi-spindle head. At the preliminary design stage, the goal is to select the number of working positions and to decide which spindle heads will be installed minimizing the machine cost while respecting a given production rate. The paper presents the overall approach and depicts mathematical and decision-support methods developed and implemented in a software for the optimization of preliminary design (or reconfiguration) of such machining systems.
Rocznik
Strony
265--271
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
autor
  • Research Centre for Industrial Engineering and Computer Science, Ecol des Mines de St Etienne, 158, cours Fauriel 42023 Saint Etienne, France, Dolgui@emse.fr
Bibliografia
  • [1] J. Brown, Digital Manufacturing, The PLM Approach to better Manufacturing Processes, Tech-Clarity, Park Place, 2004.
  • [2] M. Grieves, Product Lifecycle Management: Driving the Next Generation of Lean Thinking, McGraw Hill, Princeton, 2005.
  • [3] J. Stark, Product Lifecycle Management: 21st century Paradigm for Product Realization, Series: Decision Engineering, Springer, Berlin, 2005.
  • [4| A. Dolgui, N. Guschinsky, and G. Levin, "Graph approach for optimal design of transfer machine with rotary table", Int. J. Production Research 47 (2), 321-341 (2009).
  • [5] R.G. Askin, Standridge Modeling and Analysis of Manufacturing Systems, John Wiley & Sons, Oxford, 1993.
  • [6] I. Baybars, "A survey of exact algorithms for the simple assembly line balancing", Management Science 32, 909-932 (1986).
  • [7] A. Scholl and R. Klein, "Balancing assembly lines effectively: a computational comparison", Eur. J. Operational Research 114,51-60(1998).
  • [8] E-H. Aghezzaf and A. Artiba, "Lagrangean relaxation technique for the general assembly line balancing problem", J. Intelligent Manufacturing 6, 123-131 (1995).
  • [9] F. van Assche and W.S. Herroelen, "An optimal procedure for the single model deterministic assembly line balancing problems", Eur. J. Operational Research 3 (2), 142-149 (1979).
  • [10] H.F. Ugurdag, C.A. Papachristou, and R. Rachamadugu, "Designing paced assembly lines with fixed number of stations", Eur. J. Operational Research 102, 488-501 (1997).
  • [11] A.L. Arcus, "COMSOAL: A computer method of sequencing operations for assembly lines". Int. J, Production Research 4, 259-277 (1966).
  • [12] W.B. Helgeson and D.P. Birnie, "Assembly line balancing using ranked positional weight technique", J. Industrial Engineering 12, 394-398 (1961).
  • [13] B. Rekiek, P. De Lit, F. Pellichero, T. L'Eglise, P. Fouda, E. Falkenauer, and A. Delchambre, "A multiple objective grouping genetic algorithm for assembly line design", J. Intelligent Manufacturing 12, 467-485 (2001).
  • [14] C. Becker and A. Scholl, "A survey on problems and methods in generalized assembly line balancing", Eur. J. Operational Research 168, 694-715 (2006).
  • [15] E. Erel and S.C. Sarin, "A survey of the assembly line balancing procedures", Production Planning and Control 9(5), 414-434 (1998).
  • [16] S. Ghosh and R. Gagnon, "A comprehensive literature review and analysis of the design, balancing and scheduling of assembly lines", Int. J. Production Research 27(4), 637-670 (1989).
  • [17] B. Rekiek, A. Dolgui, A. Delchambre, and A. Bratcu, "State of art of assembly lines design optimization", Annual Reviews in Control 26(2), 163-174 (2002).
  • [18] R. Gadidov and W. Wilhelm, "A cutting plane approach for the single-product assembly system design problem", Int. J. Production Research 38 (8), 1731-1754 (2000).
  • [19] J. Bukchin and M. Tzur, "Design of flexible assembly line to minimize equipment cost", IIE Transactions 32, 585-598 (2000).
  • [20] J. Bukchin and J. Rubinovich, "A weighted approach for assembly line design with station paralleling and equipment selection", HE Transactions 35, 73-85 (2003).
  • [21] A. Dolgui, B. Finel, N. Guschinsky, G. Levin, and F. Vernadat, "MIP approach to balancing transfer lines with blocks of parallel operations", HE Transactions 38, 869-882 (2006).
  • [22] M. Wilheim, A.E. Smith, and B. Bidanda, "Integrating an expert system and a neural network for process planning", Engineering Design and Automation 1 (4), 259-269 (1995).
  • [23] G.W. Zhang, S.C. Zhang, and Y.S. Xu, "Research on flexible transfer line schematic design using hierarchical process planning", J. Materials Processing Technology 129, 629-633 (2002).
  • [24] A,I. Dashchenko, Manufacturing Technologies for Machines of the Future: 21st Century Technologies, Springer, Berlin, 2003.
  • [25] K. Hitomi, Manufacturing Systems Engineering, Taylor & Francis, Oxfordshire, 1996.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0040-0027
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.