PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computational electromagnetics for design optimization: the state of the art and conjectures for the future

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper reviews the state of the" art in modern field simulation techniques available to assist in the design and performance prediction of electromechanical and electromagnetic devices. Commercial software packages, usually exploiting finite element and/or related techniques, provide advanced and reliable tools for every-day use in the design office. At the same time Computational Electromagnetics continues to be a thriving area of research with emerging new techniques and methods, in particular for multi-physics applications and in the area of multi-objective optimization.
Twórcy
  • School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, United Kingdom, jks@soton.ac.uk
Bibliografia
  • [1] COMPUMAG 2007 Proceedings, IEEE Transactions on Magnetics 44 (6), (2008).
  • [2] International Compumag Society, http://www.compumag.co.uk/.
  • [3] CEFC 2006 Proceedings, IEEE Transactions on Magnetics, 43 (4), (2007).
  • [4] Special Issue on Computational Electromagnetics, IEE Proceedings, SMT 149 (5) (2002), and 151 (6) (2004).
  • [5] IET Sci. Meas. Technol. 1 (1), (2007).
  • [6] ISEF 2005, International Symposium on Electromagnetic Fields in Electrical Engineering, selected papers, COMPEL 27 (3), (2008).
  • [7] EPNC 2008, Symposium on Electromagnetic Phenomena in Nonlinear Circuits, selected papers, COMPEL 28 (3), (2009).
  • [8] 18th International Conference on Electrical Machines, 1-6 (2008).
  • [9] Workshop on Optimization and Inverse Problems in Electromagnetics OIPE, COMPEL 26 (2), (2007).
  • [10] J.K. Sykulski, International Compumag Society Newsletter, ISSN 1026-0854.
  • [11] Professional Network Electromagnetics, IET, London, UK, http://kn.theietorg/communities/electromagnetics/aboutcfm.
  • [12] P. Hammond and J.K. Sykulski, Engineering Electromagnetism, Physical Processes and Computation, Oxford Science Publications, New York, 1994.
  • [13] J.K. Sykulski, Computational Magnetics. Chapman & Hall, London, 1995.
  • [14] R.L. Stoll, The Analysis of Eddy Currents, Clarendon Press, Oxford, 1974.
  • [15] K.J. Binns, P.J. Lawrenson and C.W. Trowbridge, The Analytical and Numerical Solution of Electric and Magnetic Fields, John Wiley & Sons, New York, 1992.
  • [16] A.B.J. Reece and T.W. Preston, Finite Element Methods in Electrical Power Engineering, Oxford Science Publications, Oxford, 2000.
  • [17] K. Hameyer and R. Belmans, Numerical Modeling and Design of Electrical Machines and Devices, WIT Press, Southampton, 1999.
  • [18] D.A. Lowther and P.P. Silvester, Computer-Aided Design in Magnetics, Springer, London, 1985.
  • [19] OPERA, Vector Fields Ltd, http://www.vectorfields.co.uk/.
  • [20] MagNet, Infolytica, http://www.infolytica.com/.
  • [21] Maxwell, Ansoft, http://www.ansoftcom/.
  • [22] ANSYS Multiphysics, http://www.ansys.com/products/defaultasp.
  • [23] FLUX, CEDRAT Software, http://www.cedratcom/.
  • [24] MEGA, http://www.bedl.co.uk/.
  • [25] Integrated Engineering Software, http://www.integratedsoftcom/.
  • [26] SPEED, http://www.speedlab.co.uk/software.html.
  • [27] C.W. Trowbridge and J.K. Sykulski, "Some key developments in computational electromagnetics and their attribution", IEEE Transactions on Magnetics 42 (4), 503-508 (2006).
  • [28] R. Southwell, Relaxation Methods in Theoretical Physics, OUP, Oxford, 1946.
  • [29] M.J. Turner et al, "Stiffness and deflection analysis of complex structures", J. Aero Sci. 23, 805-806 (1956).
  • [30] A.M. Winslow, "Numerical calculation of static magnetic fields in an irregular triangle mesh", J Comput. Phys. 1, 149-150 (1966).
  • [31] P.P. Silvester, "High-order polynomial triangular finite elements for potential problems", Int. J. Engineering Science 7, 849-861 (1969).
  • [32] M.Y.K Chari and P.P. Silvester, "Finite element analysis of magnetically saturated dc machines", IEEE Trans. PAS 89 (7), 1642-51 (1970) and 90 (2), 454-464 (1971).
  • [33] J.A. Meijerink and Y. der Vorst, "An iterative solution method for systems of which the coefficient matrix is a symmetric Mmatrix", Maths. Comp. 31, 148-149 (1977).
  • [34] J. Simkin and C.W. Trowbridge, "On the use of the total scalar potential in the numerical solution of field problems in electromagnetics", IJNME 14,432-433 (1978).
  • [35] Z. Cendes, D. Shenton, and M. Shahnasser, "Magnetic field computation using Delaunay triangulation and complementary finite element methods", IEEE Trans. on Magnetics 19, 2551-2554 (1983).
  • [36] L. Janucke and A. Kost, "Error estimation and adaptive mesh generation in the 2D and 3D finite element method", IEEE Trans. Magn. 32 (3), (1992).
  • [37] E.M. Freeman and D.A. Lowther, "A novel mapping technique for open boundary finite element solutions to poissons equation", IEEE Trans. Magn. 24 (6), (1988).
  • [38] J. Imhoff, G. Meunier and J.C. Sabonnadiere, "Finite element modeling of open boundary problems", IEEE Trans. Magn. 26. (2), (1990).
  • [39] A. Bossavit and J.C. Verite, "A mixed FEM-BIEM method to solve 3-D eddy current problem", IEEE Trans. Magn., 431-435 (1982).
  • [40] A. Bossavit, "Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism", IIE Proc. A 135,493-500 (1988).
  • [41] O. Hiro, K Preis and K. Richter, "On the use of the magnetic vector potential in the nodal and edge finite element analysis of 3D magnetostatic problems", IEEE Trans. Magn. 32 (3), (1996).
  • [42] T. Yioultsis and T. Tsiboukis, "Multiparametric finite elements: a systematic approach to the construction of 3-D, higher order, tangential vector shape functions", IEEE Trans. Magn. 32 (3), (1996).
  • [43] D. Baldomir, "Differential forms and electromagnetism in 3-dimensional Euclidian space R3", IEE Proc A 133, 139-140 (1986).
  • [44] Z. Ren, "Application of differential forms in the finite element formulation of electromagnetic problems", ICS Newsletter, 7 (3), 6-11 (2000).
  • [45] E. Tonti, "Finite formulation of electromagnetic field", ICS Newsletter, 8 (1), 5-11 (2001).
  • [46] P. Hammond and J. Penman, "Calculation of inductance and capacitance by means of dual energy principles", Proc IEE 123 (6), 554-559 (1976).
  • [47] J.K. Sykulski, "Computer package for calculating electric and magnetic fields exploiting dual energy bounds", IEE Proceedings A 135 (3), 145-150 (1988).
  • [48] L.M. Mayergoyz, "Mathematical models of hysteresis", IEEE Trans. Magn. 22, (1986).
  • [49] L. Dupre and J. Malkebeek, "Electromagnetic hysteresis modeling: from material science to finite element analysis of devices", ICS Newsletter, 10 (3), 4-14 (2003).
  • [50] A.G. Jack, B.C. Mecrow, P.G. Dickinson, and D. Stephenson, "Permanent-magnet machines with powdered iron cores and prepressed windings", IEEE Trans. Ind. Appl. 36, 1077-1084 (2000).
  • [51] J.K. Sykulski, KF. Goddard, and R.L. Stoll, "A method of estimating the total AC loss in a high-temperature superconducting transformer winding", IEEE Trans. Magn. 36, 1183-7 (2000).
  • [52] I.O. Golosnoy and J.K Sykulski, "Evaluation of the front-fixing method capabilities for numerical modeling of field diffusion in high-temperature superconducting tapes", IET Science Measurement and Technology 2 (6), 418-426 (2008).
  • [53] A. Razek, J. Coulomb, M. Feliachi, and J.C. Sabonnadiere, "Conception of an Air-Gap Element for the Dynamic Analysis of the Electromagnetic Field in Electric machines", IEEE Trans. Magn. 18 (2), (1982).
  • [54] D. Rodger, H. Lai and P. Leonard, "Coupled elements for problems involving motion", IEEE Trans. Magn. 26 (2), (1990).
  • [55] L.A. Tsukerman, "Overlapping finite elements for problems with movement", IEEE Trans. Magn. 28 (5), 2247-2249 (1992).
  • [56] A Demenko, "Movement simulation in finite element analysis of electric machine dynamics", IEEE Trans. Magn. 32 (3), (1996).
  • [57] C. Christopoulos, The Transmission-Line Modelling Method: TLM, IEEE Press and Oxford University Press, Oxford, 1995.
  • [58] P. Sewell, J.G. Wykes, T.M. Benson, D.W Thomas, A Vukovic, and C. Christopoulos, "Transmission line modeling using unstructured meshes", IEE Proc SMT 151 (6), 445-448 (2004).
  • [59] T. Weiland, "Time domain electromagnetic field computation with finite difference methods", Int. J. Numerical Modeling 9, 295-319 (1996).
  • [60] C.A Brebbia and A Kassab, Electrical Engineering and Electromagnetics VII, Wit Press, Southampton, 2006.
  • [61] Y. Takahashi and S. Wakao, "Large-scale analysis of eddycurrent problems by the hybrid finite element-boundary element method combined with the fast multipole method", IEEE Trans. Magn. 42 (4), 671-674 (2006).
  • [62] C.J. Carpenter, "Surface-integral methods of calculating forces on magnetized iron parts", IEE Monograph 342, 19-28 (1959).
  • [63] F. Henrotte, "Handbook for the computation of electromagnetic forces in a continuous medium", Int. Compumag Society Newsletter 24 (2), 3-9 (2004).
  • [64] J.L. Coulomb and G. Meunier, "Finite element implementation of virtual work principle for magnetic force and torque computation", IEEE Trans. Magn. 20, (1985).
  • [65] S. McFee, J. Webb, and D.A Lowther, "A tunable volume integration formulation for force calculation in finite-element based computational magnetostatics", IEEE Trans. Magn. 24, 439-442 (1988).
  • [66] F. Henrotte, H.V. Sande, G. Deliege, and K. Hameyer, "Electromagnetic force density in a ferromagnetic material", IEEE Trans. Magn. 40, 553-556, (2004).
  • [67] D.H. Kim, D.A. Lowther, and J.K. Sykulski, "Efficient force calculations based on continuum sensitivity analysis", IEEE Trans. Magn. 41 (5), 1404-1407 (2005).
  • [68] D.H. Kim, D.A. Lowther, and J.K. Sykulski, "Efficient global and local force calculations based on continuum sensitivity analysis", IEEE Traits. Magn. 43 (4), 1177-1180 (2007).
  • [69] M. Li, D.H. Kim, D.A. Lowther, and J.K. Sykulski, "A sensitivity approach to force calculation in electrostatic MEMS devices", IEEE Transactions on Magnetics 44 (6), 1610-3 (2008).
  • [70] J.K. Sykulski, K. Goddard, and R.L. Stoll, "High temperature super-conducting demonstrator transformer: design considerations and first test results", IEEE Trans. on Magnetics 35 (5), 3559-61 (1999).
  • [71] J.K. Sykulski, C. Beduz, R.L. Stoll, M.R Harris, K. Goddard, and Y. Yang, "High temperature superconducting power transformers: conclusions from a design study", IEE Proceedings; Electrical. Power Applications 146 (1), 41-52 (1999).
  • [72] M.K. Mosawi, c.Beduz, K.F. Goddard, J.K. Sykulski, Y. Yang, B. Xu, K.S. Ship, R Stoll, and N.G. Stephen, "Design of a 100 kVA high temperature superconducting demonstration synchronous generator", Physica C 372-6(P3), 1539-1542 (2002).
  • [73] K.F. Goddard, J.K. Sykulski, and R.L. Stoll, "A new approach to modelling dominant AC loss in HTc superconducting solenoidal windings", IEEE Trans. on Magn. 35 (3), 1195-1198 (1999).
  • [74] J.K. Sykulski, M. Rotaru, and R.L. Stoll, "2D modelling of field diffusion and AC losses in high temperature superconducting tapes", IEEE Trans. on Magn. 36 (4), 1178-1182 (2000).
  • [75] B. Lukasik, K.F. Goddard, and J.K. Sykulski, "Finite-element assisted method to reduce harmonic content in the air-gap flux density of a high-temperature superconducting coreless rotor generator", IET Science, Measurement and Technology 2 (6), 485-492 (2008).
  • [76] KF. Goddard, B. Lukasik, and J.K. Sykulski, "Alternative designs of a superconducting synchronous generator: the Southampton approach", Int. Conf. Electrical Machines ICEM, (CD-ROM), (2008).
  • [77] A. Demenko and J.K. Sykulski, "Network equivalents of nodal and edge elements in electromagnetics", IEEE Transactions on Magnetics 38 (2), 1305-1308 (2002).
  • [78] A. Demenko and J.K. Sykulski, "Magneto-electric network models in electromagnetism", COMPEL: The International J. Computation and Mathematics in Electrical and Electronic Engineering 25 (3),581-588 (2006).
  • [79] A. Demenko, J.K. Sykulski, and R. Wojciechowski, "Network Representation of Conducting Regions in 3-D Finite-Element Description of Electrical Machines", IEEE Transactions on Magnetics 44 (6), 714-717 (2008).
  • [80] A. Demenko, J.K. Sykulski, and R Wojciechowski, "Calculation of inducted currents using edge elements and T-To formulation", IET Sci. Meas. Technol. 2 (6), 434-439 (2008).
  • [81] A. Sobester, S.J. Leary, and A.J. Keane, "On the design of optimization strategies based on global response surface approximation Models", J. Global Optimization 33, 31-59 (2005).
  • [82] M. Farina and J.K. Sykulski, "Comparitive study of evolution strategies combined with approximation techniques for practical electromagnetic optimization problems", IEEE Trans. Magnetics 37 (5), 3216-3220 (2001).
  • [83] L. Lebensztajn, C.A.R. Marretto, M.C. Costa, and J-L. Coulomb, "Kriging: a useful tool for electromagnetic devices optimization", IEEE Trans. Magnetics 40 (2), 1196-1199 (2004).
  • [84] D.H. Kim, K.F. Ship and J.K. Sykulski, "Applying continuum design sensitivity analysis combined with standard EM software to shape optimization in magnetostatic problems", IEEE Trans. on Magnetics 40 (2), 1156-1159 (2004).
  • [85] D.H. Kim, J.K. Sykulski and D.A. Lowther, "A novel scheme for material updating in source distribution optimization of magnetic devices using sensitivity analysis", IEEE Trans. on Magnetics 41 (5), 1752-1755 (2005).
  • [86] D.H. Kim, D.A. Lowther, and J.K. Sykulski, "Smooth boundary topology optimization applied to an electrostatic actuator", IET Science, Measurement and Technology 2 (6), 427-433 (2008).
  • [87] J.K. Sykulski, "New trends in optimization in electromagnetics", Przegląd Elektrotechniczny 83 (6), 13-18 (2007).
  • [88] D.H. Wolpert and W.G. Macready, "No free lunch theorems for optimization", IEEE Trans. Evol. Comp. 1 (1), 67-82 (1997).
  • [89] W.P. Baritompa, M. Dur, E.M.T. Hendrix, L. Noakes, W.J. Pullan and G.R Wood, "Matching stochastic algorithms to objective function landscapes", J. Global Optimization 31 (4), 579-598 (2005).
  • [90] D.R. Jones, "A taxonomy of global optimization methods based on response surfaces", J. Global Optimization 21, 345-374 (2001).
  • [91] A.J. Keane, "Statistical improvement criteria for use in multiobjective design optimization", AIAA Journal 44 (4), 879-891 (2006).
  • [92] T.J. Santner, B.J. Williams, and W.I. Notz, The Design and Analysis of Computer Experiments, Springer, London, 2003.
  • [93] D.R. Jones, M. Schonlau, and W.J. Welch, "Efficient global optimization of expensive black-box functions", J. Global Optimization 13, 455-492 (1998).
  • [94] A. Sobester, S.J. Leary, and A.J. Keane, "On the design of optimization strategies based on global response surface approximation models", J. Global Optimization 33, 31-59 (2005).
  • [95] G.I. Hawe and J.K. Sykulski, "A scalarizing one-stage algorithm for efficient multi-objective optimization", IEEE Transactions on Magnetics 44 (6), 1094-1097 (2008).
  • [96] K.M. Miettinen, Nonlinear Multiobjective Optimization, Kluwer Academic Publishers, London, 1999.
  • [97] J. Knowles, "ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems", IEEE Trans. Evol. Comp. 10 (I), 50-66 (2006).
  • [98] L. Lebensztajn, et al. "A multi-objective analysis of a special switched reluctance motor", COMPEL 24 (3), 931-941 (2005).
  • [99] A.J. Keane, "Statistical improvement criteria for use in multiobjective design optimization", AIAA Journal 44 (4), 879-891 (2006).
  • [100] M.T.M. Emmerich, K.C. Giannakoglou, and B. Naujoks, "Single- and multiobjective evolutionary optimization assisted by gaussian random field metamodels", IEEE Trans. Evol. Comp. 10 (4), 421-439 (2006).
  • [101] D. Montgomery, Design and Analysis of Experiments, John Wiley and Sons, New York, 2001.
  • [102] J.R. Kalagnanam and UM. Diwekar, "An efficient sampling technique for off-line quality control", Technometrics 39 (3), 308-318 (1997).
  • [103] 13th Biennial IEEE Conference on Electromagnetic Field Computation CEFC 2008, Athens, Greece, 11-15 May 2008, http://www.cefc2008.gr/cefc2008/index.php, (2008).
  • [104] 14th International Symposium on Electromagnetic Fields in Electrical and Electronic Engineering (ISEF), Arras, France, 10-12 September 2009. http://www.lsee.fr/isefO9/, (2009).
  • [105] International Conference on Electrical Machines, Vilamoura, Portugal Greece, 6-9 Sept 2008, http://www.apdee.org/index.php?pageid=1237, (2008).
  • [106] IGTE Symposium on Numerical Field Calculation in Electrical Engineering, Graz University of Technology, Austria, 21-24 September, 2008, http://www.igte.tugraz.at/symp08/cms/, (2008).
  • [107] COMPUMAG 2009, Florianopolis, Brazil, 22-26 November 2009, http://www.grucad.ufsc.br/c2009/, (2009).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0038-0030
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.