PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanomechanics = biomechanics

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The knowledge of the mechanism of mechanical energy production by the so-called bioengines, living cells, could be very helpful for resolving different tasks concerning nanomechanics, e.g., construction of nanorobots. The present work considers a new idea, namely that the conformational changes within the so-called track, actin filament or microtubule are crucial for production of the mechanical energy by all bioengines. This concept contrasts with the presently prevailing view, according to which the force is generated as a result of conformational changes within the so-called motor proteins: myosin, kinesin or dynein.
Rocznik
Strony
47--53
Opis fizyczny
Bibliogr. 42 poz., rys.
Twórcy
autor
  • Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Trojdena St., 02-109 Warsaw, Poland, Iskubiszak@ibib.waw.pl
Bibliografia
  • [1] L. Skubiszak, "Force is generated by elongation of the actin filament", FEBS J. 274, E4-5 (2007).
  • [2] K. Kinosita, R. Yasuda, H. Noji, S. Ishiwata, and M. Yoshida, "FI-ATPase: a rotary motor made of a single molecule", J. Cell 93 (I), 21-24 (1998).
  • [3] M. Yoshida, E. Muneyuki, and T. Hisabori, "ATP synthasea marvellous rotary engine of the cell", Nat. Rev. Mol. Cell Biol. 2 (9), 669-677 (2001).
  • [4] L. Stryer, Biochemistry, W.H. Freeman, New York, 2002.
  • [5] A.F. Huxley and R. Niedergerke, "Structural changes in muscle during contraction", Nature 173, 971-972 (1954).
  • [6] H.E. Huxley and J. Hanson, "Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation", Nature 173, 973-976 (1954).
  • [7] J.V. Small, "Myosin filaments on the move", Nature 331, 568-569 (1988).
  • [8] J.V. Small and G.P. Resch, "The comings and goings of actin: coupling protrusion and retraction in cell motility", Curr. Opin Cell Biol. 17 (5), 517-523 (2005).
  • [9] A.K. Lewis and P.c. Bridgman, "Nerve growth cone lamel lipodia contain two populations of actin filaments that differin organization and polarity", J. Cell Biol. 119 (5), 1219-1243 (1992).
  • [10] I.P. Heath and B.F. Holifield, "On the mechanisms of cortical actin flow and its role in cytoskeletal organization of fibroblasts", Symp. Soc. Exp. Biol. 47, 35-56 (1993).
  • [11] J.W. Shaevitz and D.A. Fletcher, "Curvature and torsion in growing actin networks", Phys. Biol. 5 (2), 26006 (2008).
  • [12] loB. Pedersen, I.R Veland, J.M. Schrpder, and S.T. Christensen, "Assembly of primary cilia", Dev. Dyn. 237 (8), 1993-2006 (2008).
  • [13] I. Rayment, H.M Holden, M. Whittaker, C.B. Yohn, M. Lorenz, K.C. Holmes, and R.A. Milligan, "Structure of the actin-myosin complex and its implications for muscle contraction", Science 261 (5117), 58-65 (1993).
  • [14] I. Rayment, W.R. Rypniewski, K Schmidt-Base, R Smith, D.R. Tomchick, M.M. Benning, D.A. Winkelmann, G. Wesenberg, and H.M. Holden, "Three-dimensional structure of myosin subfragment-1: a molecular motor", Science 261 (5117), 50-58 (1993).
  • [15] T.Q. Uyeda, P.D. Abramson, and I.A Spudich, "The neck region of the myosin motor domain acts as a lever arm to generate movement", Proc. Natl Acad. Sci. USA 93 (9), 4459-4464 (1996).
  • [16] L. Skubiszak and L. Kowalczyk, "Myosin molecule packing within the vertebrate skeletal muscle thick filaments. A complete bipolar model", Acta Biochim. Pol. 49 (4), 829-840 (2002).
  • [17] L. Skubiszak, "Thin filament flexibility and its role in muscle contraction", Biophysics 51 (5), 692-700 (2006).
  • [18] M.A. Geeves, R. Fedorov, and D.J. Manstein, "Molecular mechanism of actomyosin-based motility", Cell Mol. Life Sci. 62 (13), 1462-1477 (2005).
  • [19] R. Dorninguez, Y. Freyzon, K.M. Trybus, and C. Cohen, "Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state", Cell 94 (5), 559-571 (1998).
  • [20] A. Houdusse, V.N. Kalabokis, D. HimmeI, A.G. Szent-Györgyi, and C. Cohen, "Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head", Cell 97 (4), 459-470 (1999).
  • [21] D. Risal, S. Gourinath, D.M. Himmel, A.G. Szent-Györgyi, and C. Cohen, "Myosin subfragment 1 structures reveal a partially bound nucleotide and a complex salt bridge that helps couple nucleotide and actin binding", Proc. Natl Acad. Sci. USA 101 (24), 8930-8935 (2004).
  • [22] C.S. Peskin, G.M. Odell, and G.F. Oster, "Cellular motions and thermal fluctuations: the Brownian ratchet", Biophys J. 65 (1),316-324 (1993).
  • [23] T.D. Pollard, "The cytoskeleton, cellular motility and the reductionist agenda", Nature 422 (6933), 741-745 (2003).
  • [24] T.D. Pollard and G.G. Borisy, "Cellular motility driven by assembly and disassembly of actin filaments", Cell 112 (4), 453-465 (2003).
  • [25] J. Plastino and C. Sykes, "The actin slingshot", Curr. Opin. Cell Biol. 17 (I), 62-66, (2005).
  • [26] A Mogilner, "On the edge: modeling protrusion", Curr. Opin. Cell Biol. 18 (I), 32-39 (2006).
  • [27] T.P. Stossel, "Contribution of actin to the structure of the cytoplasmic matrix", J. Cell Biol. 99 (1 Pt 2), 15-21 (1984).
  • [28] D.A. Begg, R Rodewald, and L.I. Rebhun, "The visualization of actin filament polarity in thin sections. Evidence for the uniform polarity of membrane-associated filaments", J. Cell Biol. 79 (3), 846-852 (1978).
  • [29] D. Soldati and M. Meissner, "Toxoplasma as a novel system for motility", Curr. Opin. Cell Biol. 16 (1), 32-40 (2004).
  • [30] A.J. Ridley and A Hall, "The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors", Cell 70 (3), 389-399 (1992).
  • [31] A.J. Ridley, "Rho family proteins: coordinating cell responses", Trends Cell Bio/. 11 (12),471-477 (2001).
  • [32] A.J. Ridley, "Rho GTPases and cell migration", J. Cell Sci. 114 (Pt 15), 2713-2722 (2001).
  • [33] E.A. Papakonstanti and C. Stournaras, "Cell responses regulated by early reorganization of actin cytoskeleton", FEBS Left. 582 (14), 2120-2127 (2008).
  • [34] L.A. Cameron, T.M. Svitkina, D.Vignjevic, J.A. Theriot, and G.G. Borisy, "Dendritic organization of actin comet tails", Curr. Biol. 11 (2), 130-135 (2001).
  • [35] S.C. Kuo and J.L McGrath, "Steps and fluctuations of Listeria monocytogenes during actin-based motility", Nature 407 (6807), 1026-1029 (2000).
  • [36] S. Even-Ram and KM. Yamada, "Cell migration in 3D matrix", Curr. Opin. Cell Bio/. 17 (5) 524-532 (2005).
  • [37] M. Bindschadler and J.L McGrath, "Formin' new ideas about actin filament generation", Proc. Natl Acad. Sci. USA 101 (41), 14685-14686 (2004).
  • [38] M. Bindschadler, E.A Osborn, C.F. Dewey, and J.L McGrath, "A mechanistic model of the actin cycle", Biophys. J. 86 (5), 2720-2739 (2004).
  • [39] L. Skubiszak, " Participation of the individual overmolecular muscular cell in movement", VII State Scientific Conf. Biocybernetics and Biomedical Engineering 1, 122-124 (1985), (in Polish).
  • [40] L. Skubiszak, "Force generation in muscle. Organization in working structures of muscle", Lect. Not. ICB Sem. 5, 237-297 (1989).
  • [41] L. Skubiszak, "On muscle contraction mechanism", Lecture Notes Modeling in Biomechanics 19, 537-566 (2005).
  • [42] http://sarcomere.ibib.waw.pl
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0038-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.