Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Stress and deformation analysis of materials and devices at the nanoscale level are topics of intense research in materials science and mechanics. In these investigations two approaches are observed. First, natural for the atomistic scale description is based on quantum and molecular mechanics. Second, characteristic for the macroscale continuum model description, is modified by constitutive laws taking atomic interactions into account. In the present paper both approaches are presented. For a discrete system of material points (atoms, molecules, clusters), measures of strain and stress, important from the mechanical viewpoint, are given. Numerical examples of crack propagation and deformation of graphite sheets (graphens) illustrate the behavior of the discrete systems.
Słowa kluczowe
Rocznik
Tom
Strony
41--46
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
autor
autor
- Institute of Structural Mechanics, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland, szefer@limba.wil.pk.edu.pl
Bibliografia
- [1] J. Ray, "Molecular dynamics equations of motion for systems varying in shape and size", J. Chem. Phys. 79 (10), 5128-5130 (1983).
- [2] M. Ribarsky and U. Landman, "Dynamical simulation of stress, strain and finite deformation", Phys. Rev. B 38 (14), 9522-9537 (1988).
- [3] W.K. Liu, E. Karpow, and H. Park, Nano Mechanics and Materials, Wiley, Chicester, 2006.
- [4] H. Kitagawa, T. Aihara Jr, and Y. Kawazoe, Mesoscopic Dynamics of Fracture, Springer, Berlin, 1998.
- [5] D. Raabe, Computational Material Science, Wiley, Weinheim, 1998.
- [6] Ch. Li and T. Chou, "A structural mechanics approach for the analysis of carbon nanotubes", Int. J. Solids Struct. 40, 2487-2499 (2003).
- [7] X. Gao and K. Li, "Finite deformation continuum model for single-walled carbon nanotubes", Int. J. Solids Struct. 40, 7329-7373 (2003).
- [8] A. Pantano, D. Parks, and M. Boyce, "Mechanics of deformation of single- and-multi walled carbon nanotubes", J. Mech. Phys Solids 52, 789-821 (2004).
- [9] G. Odagard, T. Gates, L. Nicholson, and K. Wise, "Equivalent continuum modeling of nano-structured materials", Comp. Sci. Techn. 62 (14), 1869-1880 (2002).
- [10] K. Tserpes and P. Papanikos, "Finite element modeling of single walled carbon nanotubes", Composites B 36, 468-477 (2005).
- [11] R. Phillips, Crystals, Defects, and Microstructures, Cambridge Univ. Press, Cambridge, 200l.
- [12] M. Parrinello and A. Rahman, "Crystal structure and pair potentials: a molecular dynamics study", Phys. Rev. Lett. 45 (14), 1196-1199 (1980).
- [13] M. Parrinello and A. Rahman, "Strain fluctuations and elastic constants", J. Chem. Phys. 76 (5), 2662-2666 (1982).
- [14] P. Mott, A. Argon, and U. Sutter, "The atomic strain tensor", J. Theor. Phys. 101, 140-150 (1992).
- [15] R. Pyrz and B. Bochenek, "Discrete-continuum transition at interfaces of nanocomposites", Bull. Pol. Ac.: Tech. 55 (2), 251-260 (2007).
- [16] P. Dłużewski and P. Traczykowski, "Numerical simulation of atomic position in quantum dot by means of molecular statics", Arch. Mech. 55 (5-6), 393-406 (2003).
- [17] G. Capriz, Introductory remarks to the dynamics of continua with microstructure, Banach Center Publications, vol. 15, PWN, Warsaw, 1986.
- [18] W. Hoover, Molecular Dynamics (Lecture Notes in Physics), No. 258, Springer, Berlin, 1986.
- [19] U. Landman, W. Luedtke, and E. Ringer, "Molecular dynamics simulations of adhesive contact formation and friction" in Fundamentals of Friction: Macroscopic and Microscopic Processes, eds. I. Singer and H. Polloc, Kluver Ac. Publ., Dordrecht, 1992.
- [20] M. Zhou, "A new look at the atomic level virial stress: on continuum-molecular system equivalence", Proc. Roy. Soc. Lond. A 459, 2347-2392 (2003).
- [21] H. Wu, "Molecular dynamics study of the mechanics of metal nanovires at finite temperature", Europ. J. Mech. A/Solids 25, 370-377 (2006).
- [22] A. Subramaniyan and C. Sun, "Continuum interpretation of virial stress in molecular simulations", Int. J. Solids Struct. 45, 4340-4346 (2008).
- [23] R. Sunyk and P. Steinmann, "On higher gradient in continuum atomistic modeling", Int. J. Solids Struct. 40, 6877-6896 (2003).
- [24] R. Sunyk and P. Steinman, Zur Beschreibung Komplexen Materialverhaltens, Univ. Stuttgart, 200l.
- [25] R. Sunyk and P. Steinman, "Localization analysis of mixed continuum-atomistic model", J. Phys. IV France 11, 251-258 (2001).
- [26] T. Belytschko and S. Xiao, "Coupling methods for continuum model with molecular model", Int. J. Multiscale Comput. Engin. 1 (1), 115-126 (2003).
- [27] T. Delph, " Local stresses and elastic constants at the atomic scale", Proc. R. Soc. A 461, 1869-1888 (2005).
- [28] S. Iijima, "Helical microtubes of graphitic carbon", Nature 354, 56-58 (1991).
- [29] M. Chwat, Homogenization of Mechanical Properties of Composite Materials Reinforced by Carbon Nanotubes, PhD Thesis, Cracow Univ. Technology, Krakow, 2007, (in Polish).
- [30] D. Qian, G. Wagner, W. Liu, M. Yu, and R. Ruoff, "Mechanics of carbon nanotubes", Appl. Mech. Rev. 55 (6), 495-533 (2002).
- [31] M. Arroyo and T. Belytschko, "A finite deformation membrane based on inter-atomic potentials for the transverse mechanics of nanotubes", Mech. Mater. 35, 193-215 (2003).
- [32] M. Arroyo and T. Belytschko, "Finite element methods for the nonlinear mechanics of crystalline sheets and nanotubes", Int. J. Numer. Meth. Eng. 59,419-456 (2004).
- [33] T. Belytschko, S. Xiao, G. Schatz, and R. Ruoff, "Atomistic simulations of nanotube fracture", Phys. Rev. B 65 (23), 235430 (2002).
- [34] D. Qian, G. Wagner, and W. Liu, "A multiscale projection method for the analysis of carbon nanotubes", Comp. Meth. Appl. Mech. Engng. 193, 1603-1632 (2004).
- [35] K.Chandraseker and S.Mukherjee, "Modification to the Cauchy-Born rule: Applications in the deformation of the single walled carbon nanotubes", Int. J. Solids Struct. 43, 7128-7144 (2006).
- [36] http://lammps.sandia.gov.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0038-0021