PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optical low-coherence interferometry for selected technical applications

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Optical low-coherence interferometry is one of the most rapidly advancing measurement techniques. This technique is capable of performing non-contact and non-destructive measurement and can be used not only to measure several quantities, such as temperature, pressure, refractive index, but also for investigation of inner structure of a broad range of technical materials. We present theoretical description of low-coherence interferometry and discuss its unique properties. We describe an OCT system developed in our Department for investigation of the structure of technical materials. In order to provide a better insight into the structure of investigated objects, our system was enhanced to include polarization state analysis capability. Measurement results of highly scattering materials e.g. PLZT ceramics and polymer composites are presented. Moreover, we present measurement setups for temperature, displacement and refractive index measurement using low coherence interferometry. Finally, some advanced detection setups, providing unique benefits, such as noise reduction or extended measurement range, are discussed.
Rocznik
Strony
155--172
Opis fizyczny
Bibliogr. 66 poz., rys., tab.
Twórcy
autor
autor
  • Faculty of Electronics. Telecommunications and Informatics, Gdansk University of Technology, 1l/12 Narutowicza St., 80-952 Gdansk, Poland, pluc@eti.pg.gda.pl
Bibliografia
  • [1] Y.-J. Rao and D.A. Jackson, “Recent progress in fibre optic low-coherence interferometry”, Meas. Sci. Technol. 7 (7), 981–999 (1996).
  • [2] B.J. Soller, D K. Gifford, M.S. Wolfe, and M.E. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies”, Opt. Exp. 13 (2), 666–674 (2005).
  • [3] A.F. Fercher, W. Drexler, C.K. Hitzenberger, and T. Lasser “Optical coherence tomography – principles and applications”, Rep. Prog. Phys. 66 (2), 239–303 (2003).
  • [4] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press, New York, 1995.
  • [5] J.K. Ranka, R.S. Windeler, and A.J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm”, Opt. Lett. 25 (1), 25–27 (2000).
  • [6] J.W. Goodman, Statistical Optics, Wiley-Interscience, New York, 1985.
  • [7] M. Born and E. Wolf, Principles of Optics, 7th ed., Cambridge University Press, Cambridge, 1999.
  • [8] A.T. Friberg and E. Wolf, “Relationships between the complex degrees of coherence in the space-time and in the spacefrequency domains”, Opt. Lett. 20 (6), 623–625 (1995).
  • [9] M. Witczynski, M. Borwinska, and I. Jastrzebska, “Spectral decoding in fiber-optic interferometric sensors”, Optica Applicata 29 (1–2), 213–228 (1999).
  • [10] D. Derickson, Fiber-Optic Test and Measurement, Prentice Hall, New Jersey, 1998.
  • [11] K. Takada, “Noise in optical low-coherence reflectometry”, IEEE J. Quantum Electron. 34 (7), 1098-1108 (1998).
  • [12] P. Wierzba and B.B. Kosmowski, “Accuracy improvement of bulk optical polarization interferometric sensors”, Optica Applicata 35 (1), 171–185 (2005).
  • [13] P.C. D. Hobbs, “Ultrasensitive laser measurements without tears”, Appl. Opt. 36 (4), 903–920 (1997).
  • [14] K.L. Haller and P.C.D. Hobbs, “Double beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronics noise canceller”, Proc. SPIE 1435, 298–310 (1991).
  • [15] J. Dakin and B. Culshaw, Optical Fiber Sensors, Volume 4, Artech House, London, 1997.
  • [16] M. Maciejewski, J. Plucinski, M. Strakowski, and M. Jedrzejewska-Szczerska, “Modeling of broadband light source to use with optical coherent tomography system”, Proc. SPIE 6159, 870–875 (2006).
  • [17] M. Jedrzejewska-Szczerska, B.B. Kosmowski, and R. Hypszer, “Shaping of coherence function of sources used in lowcoherent measurement techniques”, J. Phys. IV France 137, 103–106 (2006).
  • [18] M. Jedrzejewska-Szczerska, “Shaping of coherence function of sources used in low-coherent measurement techniques”, The European Physical Journal Special Topics 144, 203–208 (2007).
  • [19] D.N. Wang, Y. N. Ning, K.T.V. Grattan, A.W. Palmer, and K. Weir, “The optimized wavelength combinations of two broadband sources for white light interferometry”, J. Lightwave Technol. 12 (5), 909–916 (1994).
  • [20] S.A. Egorov, A.N. Mamaev, and I. G. Likhachiev, “High reliable, self calibrated signal processing method for interferometric fiber-optic sensors”, Proc. SPIE 2594, 193–197 (1996).
  • [21] J. Tapia-Mercado, A. Khomenko, and A. Garcia-Weidner, “Precision and sensitivity optimization for white light interferometric fiber-optic sensors”, J. Lightwave Technol. 19 (1), 70–74 (2001).
  • [22] A. F. Fercher, C.K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography”, Opt. Exp. 9 (12), 610–615 (2001).
  • [23] A.G. Van Engen, S.A. Diddams, and T.S. Clement, “Dispersion measurements of water with white-light interferometry”, Appl. Opt. 37 (24), 5679–5686 (1998).
  • [24] W. Drexler, U. Morgner, F.X. Krtner, C. Pitris, S.A. Boppart, X.D. Li, E.P. Ippen, and J.G. Fujimoto, “In vivo ultrahighresolution optical coherence tomography”, Opt. Lett. 24 (17), 1221–1223 (1999).
  • [25] J.M. Schmitt, “Restoration of optical coherence images of living tissue using the CLEAN algorithm”, J. Biomed. Opt. 3 (1), 66–75 (1998).
  • [26] T.R. Hillman and D.D. Sampson, “The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography”, Opt. Exp. 13 (6), 1860–1874 (2005).
  • [27] M. Jedrzejewska-Szczerska, R. Bogdanowicz, M. Gnyba, R. Hypszer, and B.B. Kosmowski, “Fiber-optic temperature sensor using low-coherence interferometry”, The European Physical Journal Special Topics 154 (1), 107–111 (2008).
  • [28] K.T.V. Grattan and B.T. Meggit, Optical Fiber Sensor Technology, Kluwer Academic Publisher, Boston, 2000.
  • [29] C.K. Hitzenberger, E. G¨otzinger, M. Sticker, M. Pircher, and A.F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography”, Opt. Exp. 9 (13), 780–790 (2001).
  • [30] S. Jiao, G. Yao, and L.V. Wang, “Depth-resolved twodimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography”, Appl. Opt. 39 (34), 6318–6324 (2000).
  • [31] S. Jiao and L.V. Wang, “Two-dimensional depth-resolved Mueller matrix of biological tissue measured with doublebeam polarization-sensitive optical coherence tomography”, Opt. Lett. 7 (2), 101–103 (2002).
  • [32] D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography”, Science 254, 1178–1181 (1991).
  • [33] B.E. Bouma and G.J. Tearney (ed.), Handbook of Optical Coherence Tomography, Marcel Dekker, New York, 2002.
  • [34] B.R. Masters, Selected Papers on Optical Low-Coherence Reflectometry & Tomography, SPIE Press, Bellingham, 2001.
  • [35] M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A.F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography”, J. Biomed. Opt. 7 (3), 457–463 (2002).
  • [36] M.D. Duncan and M. Bashkansky, “Subsurface defect detection in materials using optical coherence tomography”, Opt. Exp. 2 (13), 540–545 (1998).
  • [37] M. Bashkansky, M.D. Duncan, M. Kahn, D. Lewis III, and J. Reintjes, “Subsurface defect detection in ceramics by high speed high-resolution optical coherent tomography”, Opt. Exp. 22 (1), 61–63 (1997).
  • [38] M. Bashkansky and J. Reintjes, “Subsurface detection and characterization of Hertzian cracks in advanced ceramic materials using optical coherence tomography” Proc. SPIE 4703, 46–52 (2002).
  • [39] J.H. Ali, W.B. Wang, P.P. Ho, and R.R. Alfano, “Detection of corrosion beneath a paint layer by use of spectral polarization optical imaging”, Opt. Lett. 25 (17), 1303–1305 (2000).
  • [40] D. Stifter, A.D. Sanchis Dufau, E. Breuer, K. Wiesauer, P. Burgholzer, O. H¨oglinger, E. G¨otzinger, M. Pircher, and C.K. Hitzenberger, “Polarisation-sensitive optical coherence tomography for material characterisation and testing”, Insight 47 (4), 209–212 (2005).
  • [41] K.Wiesauer, M. Pircher, E. G¨otzinger, S. Bauer, R. Engelke, G. Ahrens, G. Gr¨utzner, C.K. Hitzenberger, and D. Stifter, “Enface scanning optical coherence tomography with ultra-high resolution for material investigation” Opt. Exp. 13 (3), 1015–1024 (2005).
  • [42] D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical applications and developments for optical coherence tomography”, Appl. Phys. B 88 (3), 337–357 (2007).
  • [43] J.P. Dunkers, F.R. Phelan, D.P. Sanders, M.J. Everett, W.H. Green, D.L. Hunston, and R.S. Parnas, “The application of optical coherence tomography to problems in polymer matrix composites”, Opt. Lasers Eng. 35 (3), 135–147 (2001).
  • [44] K. Wiesauer, M. Pircher, E. G¨otzinger, C.K. Hitzenberger, R. Engelke, G. Gr¨utzner, G. Ahrens, R. Oster, and D. Stifter, “Measurement of structure and strain by transversal ultrahigh resolution polarisation-sensitive optical coherence tomography”, Insight 49 (5), 275–278 (2007).
  • [45] T. Fabritius and R. Myllyl¨a, “Dynamic optical coherence tomography for paper wetting measurements”, Proc. SPIE 6293, 629307-1-6 (2006).
  • [46] E. Alarousu, L. Krehut, T. Pryk¨ari, and R. Myllyl¨a, “Study on the use of optical coherence tomography in measurements of paper properties”, Meas. Sci. Technol. 16 (5), 1131–1137 (2005).
  • [47] J.C. Jasapara, “Non-invasive characterization of microstructured optical fibers using Fourier domain optical coherence tomography”, Opt. Exp. 13 (4), 1228–1233 (2005).
  • [48] M. Strakowski, M. Jedrzejewska-Szczerska, M. Maciejewski, R. Hypszer, J. Plucinski, and B.B. Kosmowski, “An optical low-coherence system for 2-dimensional visualization of thin polymer layers”, Proc. SPIE 6159, 880–885 (2006).
  • [49] M.R. Strakowski, M. Jedrzejewska-Szczerska, J. Plucinski, R. Hypszer, M. Maciejewski, and B.B. Kosmowski, “Polarization sensitive optical coherence tomography for technical materials investigations”, Proc. Eurosensors, 380–381 (2006).
  • [50] M. Strakowski, J. Plucinski, M. Maciejewski, and B.B. Kosmowski, “Polarization state analysis in optical coherence tomography”, Proc. SPIE 6347, 63471J-1–6 (2006).
  • [51] M. Maciejewski, M. Strakowski, J. Plucinski, and B.B. Kosmowski, “Dispersion compensation in optical coherence tomography”, Proc. SPIE 6347, 63471K-1–4 (2006).
  • [52] M. Maciejewski, J. Plucinski, M. Strakowski, and B.B. Kosmowski, “Polarization sensitive optical coherence tomography system”, Proc. SPIE 6348, 634803-1–6 (2006).
  • [53] M.R. Strakowski, M. Jedrzejewska-Szczerska, J. Plucinski, R. Hypszer, M. Maciejewski, and B.B. Kosmowski, “Polarization sensitive optical coherence tomography for technical materials investigations”, Sensors and Actuators A 142, 104–110 (2008).
  • [54] M. Jedrzejewska-Szczerska, M. Strakowski, B.B. Kosmowski, and R. Hypszer, “Theoretical and experimental investigation of low-noise optoelectronic system configurations for low-coherent optical signal detection”, J. Phys. IV France 137, 107–110 (2006).
  • [55] M. Pircher, E. Goetzinger, R. Leitgeb, and C.K. Hitzenberger, “Transversal phase resolved polarization sensitive optical coherence tomography”, Phys. Med. Biol. 49 (7), 1257–1263 (2004).
  • [56] I. Abdulhalim, “Competence between spatial and temporal coherence in full field optical coherence tomography and interference microscopy”, J. Opt. A: Pure Appl. Opt. 8 (11), 952–958 (2006).
  • [57] A. Dubois, G. Moneron, K. Grieve, and A.C. Boccara, “Threedimensional cellular-level imaging using full-field optical coherence tomography”, Phys. Med. Biol. 49 (7), 1227–1234 (2004).
  • [58] P. Egan, F. Lakestani, M.J. Connelly, and M.P. Whelan, “Fullfield optical coherence tomography with a complimentary metal-oxide semiconductor digital signal processor camera”, Opt. Eng. 45 (1), 015601–6 (2006).
  • [59] K. Grieve, M. Paques, A. Dubois, J. Sahel, C. Boccara, and J.-F. Le Gargasson, “Ocular tissue imaging using ultrahighresolution, full-field optical coherence tomography”, IOVS 45 (11), 4126–4127 (2004).
  • [60] Y. Zhang, M. Sato, and N. Tanno, “Resolution improvement in OCT by optimal synthesis of light emitting diodes”, Opt. Lett. 26 (4), 205–207 (2001).
  • [61] R. Tripathi, N. Nassif, N.J. Stuart, P.B. Hyle, and J.F. de Boer, “Spectral shaping for non-Gaussian source spectra in OCT”, Opt. Lett. 27 (6), 406–408 (2002).
  • [62] Y. Wang, J. Nelson, Z. Chen, B. Reiser, R. Chuck, and R. Windeler, “Optimal wavelength for ultrahigh-resolution optical coherence tomography”, Opt. Exp. 11 (12), 1411–1417 (2003).
  • [63] K. Wiesauer, A.D. Sanchis Dufau, E. G¨otzinger, M. Pircher, C.K. Hitzenberger, and D. Stifter, “Non-destructive quantification of internal stress in polymer materials by polarisation sensitive optical coherence tomography”, Acta Materialia 53 (9), 2785–2791 (2005).
  • [64] J.F. de Boer and T.E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination”, J. Biom. Opt. 7 (3), 359–371 (2002).
  • [65] E. Goetzinger, M. Pircher, A.F. Fercher, and C.K. Hitzenberger, “Polarization-sensitive optical coherence tomography: a comparison of methods”, Proc. SPIE 5316, 365–369 (2004).
  • [66] G. Yao and L.V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography”, Opt. Lett. 24 (8), 537–539 (1999).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0031-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.