PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The pollutant transport equation for a steady, gradually varied flow in an open channel network: a solution of high accuracy

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper is concerned with solving the transport pollutant problem for a steady, gradually varied flow in an open channel network. The 1D advective-diffusive transport equation is solved using the splitting technique. An analytical solution of the linear advective-diffusive equation in the form of an impulse response function is used to solve the advection-diffusion part of the governing equation. This approach, previously applied in solutions of the advection-diffusion equation for a single channel, is extended to a channel network. Numerical calculations are only required to compute the integral of convolution. The finite difference method is used to solve the second part of the governing equation, containing the source term. The applied approach has considerable advantages, especially appreciable in the case of advection-dominated transport with large gradients of concentration, since it generates no numerical dissipation or dispersion. The flow parameters are obtained via solution of the steady, gradually varied flow equation. In the final non-linear system of algebraic equations obtained through approximation of the ordinary differential equation, the depths at each cross-section of channels and the discharge at each branch of the network are considered as unknowns. The system is solved using the modified Picard iteration, which ensures convergence of the iterative process for a steady, gradually varied flow solved for both looped and tree-type open channel networks.
Rocznik
Strony
365--382
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
  • Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-952 Gdansk, Poland, rszym@pg.gda.pl
Bibliografia
  • [1] Fletcher C A 1991 Berlin, Germany
  • [2] Gresho P M and Sani R L 1998 Incompressible Flow and the Finite Element Method - Volume 1: Advection-Diffusion, J. Wiley and Sons Ltd.
  • [3] French R H 1985 Open Channel Hydraulics, McGraw-Hill, New York
  • [4] Bjorck A and Dahlquist G 1974 Numerical Methods, Prentice-Hall, Englewood Cliffs, New York
  • [5] Stoer J and Bulirsch R 1980 Introduction to Numerical Analysis, Springer- Verlag, New York
  • [6] Press W H, Teukolsky S A, Veterling W T and Flannery B P 1992 Numerical Recipes in C, Cambridge University Press
  • [7] Naidu B J, Murty Bhallamudi Sand Narasimhan S 1997 J. Hydr. Eng. 123 (8) 700
  • [8] Szymkiewicz Rand Weinerowska K 2005 Far East J. Appl. Math. 19 (24) 213
  • [9] Chow V T 1959 Open Channel Hydraulics, Mc Graw-Hill, New York
  • [10] Szymkiewicz Rand Szymkiewicz A 2004 Commun. Numer. Meth. Eng. 20 (4) 299
  • [11] Eagleson P S 1970 Dynamic Hydrology, McGraw-Hill, Inc, New York
  • [12] Byron F Wand Fuller R W 1975 Mathematics of Classical and Quantum Physics, Vol. I, PWN, Warsaw (Polish edition)
  • [13] Patankar S V 1980 Numerical Head Transfer and Fluid Flow, Hemisphere Publishing Corporation, McGraw-Hill, Washington
  • [14] Le Veque R J 2002 Finite Volume Methods for Hyperbolic Problems, Cambridge University Press
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0030-0048
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.