PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Carbon diffusion during bainite reaction in austempered ductile iron

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an investigation of the carbon concentration in the residual austenite and the time required for the diffusion of carbon out of supersaturated subunits of ferrite into the retained austenite. Experimental measurements of volume fraction of bainitic ferrite and volume of the untransforrned austenite indicate that there is a necessity of carbides precipitation from austenite. A consequence of the precipitation of cementite from austenite during austempering is that the growth of bainitic ferrite can continue to larger extent and that the resulting microstructure is not an ausferrite but is a mixture of bainitic ferrite, retained austenite and carbides. Additionally, carbon concentration in the residual austenite was calculated using volume fraction data of austenite and a model developed by Bhadeshia based on the McLellan and Dunn quasi-chemical thermodynamic model. The comparison of experimental data with the T0, T0' and Ae3' phase boundaries suggests the likely mechanism of bainite reaction in cast iron is displacive rather than diffusional. The carbon concentration in retained austenite demonstrates that at the end of bainite reaction the microstructure must consist of not only ausferrite but additionally precipitated carbides.
Rocznik
Strony
75--87
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Department of Materials Science and Engineering, Mechanical Engineering Faculty, University of Technology and Life Sciences in Bydgoszcz, Bydgoszcz, Poland
Bibliografia
  • 1. Chang L.C.: Carbon content of austenite in austempered ductile iron. Scripta Materialia 39 (1998), pp. 35-38.
  • 2. Pietrowski S.: Nodular cast iron of bainitic ferrite structure with austenite or bainitic structure. Archives of Materials Science 18 (1997), pp. 253-273 (in Polish).
  • 3. Christian J.W.: Theory of transformations in metals and alloys, 778, Oxford, Pergamon Press, 1965.
  • 4. Bhadeshia H.K.D.H.: Bainite in Steels, Institute of Materials, 1-458, London, 1992.
  • 5. Hultgren A.: Jernkontores Ann., 135 (1951) 403.
  • 6. Ławrynowicz Z., Dymski S.: Mechanism of bainite transformation in ductile iron ADI. Archives of Foundry Engineering 6 (2006), pp. 171-176 (in Polish).
  • 7. Bhadeshia H.K.D.H.: Bainite: Overall Transformation Kinetics, Journal de Phys., 43 (1982) C4 pp. 443-447.
  • 8. Bhadeshia H.K.D.H.: A Rationalization of Shear Transformations in Steels, Acta Metallurgica 29 (1981) pp. 1117-1130.
  • 9. McLellan R.B., Dunn W.W.: J. Phys. Chem. Solids. Vo1.30 (1969) 2631.
  • 10. Ławrynowicz Z.: Mechanism of bainite transformation in Fe-Cr-Mo-V-Ti-C steel. International Journal of Engineering, 12 (1999) pp. 81-86.
  • 11. Ławrynowicz Z., Barbacki A: The mechanism of bainite transformation in Fe-Cr-Mn-Si-C steel. Proc. of the Scientific Con. AMTECH'95, Rousse, Bułgaria, 19-21 April 1995, pp. 1-8.
  • 12. Bhadeshia H.K.D.H., Christian lW.: Bainite in Steels. Metallurgical Transactions A 21A (1990), pp. 767-797.
  • 13. Eric O. at al.: The austempering study of alloyed ductile iron. Materials & Design 27 (2006), pp. 617-622.
  • 14. Takahashi M., Bhadeshia H.K.D.H.: A Model for the Microstructure of Some Advanced Bainitic Steels, Materials Transaction, JIM, 32 (1991) pp. 689-696.
  • 15. Ławrynowicz Z.: Transition from upper to lower bainite in Fe-Cr-C steel. Materials Science and Technology. 20 (2004) pp. 1447-1454.
  • 16. Ławrynowicz Z.: A discussion on the mechanism of bainite transformation in steels. Technology and Materials, Gdansk, Politechnika Gdanska, 4, (2006), pp. 149-155 (in Polish).
  • 17. Thomson R.C. at al.: Modelling microstructural evolution and mechanical properties of austempered ductile iron, Materials Science and Technology. 16 (2000) pp. 1412-1419.
  • 18. Kinsman K. R., Aaronson H.I.: The transformation and hardenability in steels. Climax Molybdenum Company, Ann Arbor, MI, p.39, 1967.
  • 19. Guzik S. E.: Austempered cast iron as a modem constructional material. Inżynieria Materiałowa 6 (2003), pp. 677-680. (in Polish).
  • 20. Ławrynowicz Z., Dymski S.: Application of the mechanism of bainite transformation to modelling of processing window in ductile iron ADI. Archives of Foundry Engineering 6 (2006), pp. 177-182.
  • 21. Kutsov A at al.: Formation of bainite in ductile iron. Materials Science and Engineering A273-275 (1999), pp. 480-484.
  • 22. Bhadeshia H.K.D.H.: Diffusion of carbon in austenite. Metal Science 15 (1981), pp. 477-479.
  • 23. Ławrynowicz Z.: Criticism of selected methods for diffusivity estimation of carbon in austenite. Zeszyty Naukowe ATR nr 216, Mechanika 43, (1998), pp. 283-287 (in Polish).
  • 24. Siller R.H., McLelan R.B.: The Application of First Order Mixing Statistics to the Variation of the Diffusivity of Carbon in Austenite. Metallurgical Transactions 1 (1970), pp. 985-988.
  • 25. Ławrynowicz Z.: Bainitic transformation: estimation of carbon diffusivity in austenite on the basis of measured austenite film thickness. Zeszyty Naukowe ATR nr 216, Mechanika 43, (1998), 289-297 (in Polish).
  • 26. Ławrynowicz Z.: Carbon partitioning during bainite transformations in low alloy steels. Materials Science and Technollogy 18 (2002) pp. 1322-1324.
  • 27. Ławrynowicz Z., Barbacki A: Analiza mechanizmu izotermicznej przemiany bainitycznej w stali Cr-Mn-Si. Archiwum Nauki o Materiałach 17 (1996) pp. 127-147.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0030-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.