PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Composite oxide electrolytes for electrochemical devices

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work is focused on the comparative analysis of electrical, electrochemical and mechanical properties of composite ceramic oxide electrolytes, providing a brief overview of the materials having better performance than mo-nophase ones in various high temperature electrochemical devices such as: solid oxide fuel cells, sensors for automotive industry, oxygen probes for controlling metal processing. Introduction of Al2O3 inclusions into cubic yttria - zirconia solid solution (8YSZ) matrix, caused the improvement of electrical and mechanical properties compared to pure 8YSZ. The Nd2Ti2O7 secondary phase was also able to coexist with 8YSZ matrix and the frac-ture toughness KIc of 8YSZ ceramics was also significantly improved by Nd2Ti2O7 addition. Heterophase oxide ionic conductors in the system Calcium zirconate - cubic calcia zirconia solid electrolytes seem to be promising solid electrolytes for application in electrochemical probes for controlling oxygen dissolved in molten steel. The ionic conduction limit for electrolytes based on CaZrO3 is lower than that for calcia - stabilized zirconia (13CSZ). Hence CaZrO3-based materials perform better at low oxygen concentration at molten alloys. On the other hand composite layered ceramics involving Ce0.8Sm0.2O2/Bi0.8Eb0.2O2 or Ce0.9Gd0.1O2/BaCe0.8Y0.2O3/Ce0.9Gd0.1O1.95 system exhibited better electrolytic stability in gas atmos-pheres with low oxygen partial pressure at the temperatures 600-800°c. These materials are successfully tested as electrolytes in solid oxide fuel cells. The gradient ceramic oxide electrolytes seems to overcome the limitation of applying them as solid electrolytes in solid oxide fuel cells for long time performance.
Rocznik
Strony
14--26
Opis fizyczny
Bibliogr. 116 poz., rys., tab.
Twórcy
autor
  • AGH-University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Inorganic Chemistry, Cracow, Poland
Bibliografia
  • 1. Advances in Ceramics, Science and Technology of Zirconia, tom 1-5,1982-1993.
  • 2. Knauth P., Tuller H.: Solid State Ionics: Roots, Status and Future Prospects, Journal of the American Ceramic Society 85 (2002) pp. 1654-80.
  • 3. Fergus J.W.: Electrolytes for solid oxide fuel cells, Journal of Power Sources 162(2006) pp. 30-40.
  • 4. Kiukola K., Wagner C.: Measurements on galvanic cells involving solid oxide electrolytes, Journal of the Electrochemical Society 104 (1957) pp. 379-387.
  • 5. Pratt T.: Application of solid electrolyte in thermodynamic studies, Metallurgical Transaction, 21A, pp. 1990-1223.
  • 6. Róg G., Kozłowska-Róg A., Dudek M.: The standard Gibbs free energy of calcium chromium (III) oxide in the temperature range (1073-1273)K Journal of Chemical Thermodynamics 39 (2007) pp. 275-278.
  • 7. Kopyto M., Fitzner K.: Gibbs energy of formation of Cu2Ln2O5 (Ln = Yb, Tm, Er, Ho, Dy) and CuGd2O4, Journal of Materials Science 31, (1996), pp. 2797-2800.
  • 8. Haile S.: Materials for fuel cells, Materials Today 6 (2003) pp. 24-29.
  • 9. Pluschkell W.: Electronic conduction in the solid electrolyte of oxygen concentration, Archiv für das Eisenhüttenwesen 46 (1975) pp. 11-18.
  • 10. Ishihara T., Masuda H., Takaita Y.: Doped LaGaO3 perovskite type oxides as a new oxide ion conductors, Journal of the American Ceramic Society 116 (1994) pp. 3801-3806.
  • 11. Manthiram A., Kuo J., and Goodneough J..: Characterization of oxygen-deficient perovskites as oxide ion electrolytes Solid State lonics 62(1993) pp. 225-234.
  • 12. Kato H., Kudo T., Naito H., Yugami H.: Electrical conductivity of Al-doped La1-xSrxScO3 perovskite-type oxides as electrolyte materials for low-temperature SOFC Solid State Ionics 159(2003) pp.2 I 7-222.
  • 13. Kutty K.V., Mathews C.K., Rao C.T. and Varadaraju U.T.: Oxide ion conductivity in some substituted rare earth pyrozironiates, Solid State Ionics 80 (1995) pp. 99-110.
  • 14. Arikawa H., Nishiguchi H., Ishihara H., Takita Y.: Oxide ion conductivity in Sr-doped La10Ge6O27 apatite oxide Solid State Ionics 136-137(2000) pp.31-37.
  • 15. Zhang Y., Huang X., Lu Z., Liu Z., Ge X., Xu J., Xin X., Sha X., Su W.: A novel method for fabrication of Y2O3-stabilized ZrO2 electrolyte films, Journal of the American Ceramic Society 89 (2006) pp. 2304- 2307.
  • 16. Gaudon M., Djurado E., Menzler N.: Morphology and sintering behaviour of yttria stabilised zirconia (8-YSZ) powders synthesised by spray pyrolysis, Ceramic International 30 (2004) pp. 2295-2303.
  • 17. Peng R., Xia Ch., Peng D., Meng G.: Effect of powder preparation on (CeO2)0.8(Sm2O3)0.1 thin film properties by screen-printing, Materials Letters 58 (2004) pp. 604-608.
  • 18. Cheng J., Zha S., Huang 1., Liu X., Meng G.: Sintering behaviour and electrical conductivity of Ce0.9Gd0.1O1.95 powder prepared by the gel-casting process Materials Chemistry and Physics 78 (2003) pp.791-795.
  • 19. Shai K., Wagner J.: Enhanced ionic conduction in dispersed solid electrolyte systems (DSES) and/or multiphase systems: AgI-Al2O3, AgI-SiO2, AgI-Fly ash, and AgI-AgBr Journal of Solid State Chemistry 42 (1982) pp.107-119.
  • 20. Knauth P., Debierre J., Albient G.: Electrical conductivity of model composites of an ionic conductor (CuBr) and an insulator (TiO2, Al2O3): experiments and percolation-type model, Solid State tonics 121 (1999), pp.101-106.
  • 21. Fuijtsu S., Koumoto M., Yanagida H., Kanazawa T.: Enhancement of ionic conduction in CaF2 and BaF2 by dispersion of Al2O3, Journal of Materials Science 22 (1985) pp. 2103-2109.
  • 22. Liang C.: Conduction characteristic of the lihium iodide-aluminium oxide solid electrolytes, Journal of the Electrochemical Society 120 (1973) pp. 1289-92.
  • 23. Jacob K.T, Shukla A: Kinetic decomposition of Ni2SiO4 in oxygen potential gradients Journal of Materials Research 2 (1987) pp. 338-342.
  • 24. Vaidehi N., Akila R., Shukla A, Jacob KT.: Enhanced ionic conduction in dispersed solid electrolyte systems CaF2-Al2O3 and CaF2-CeO2 Materials Research Bulletin 21(1986) pp. 909-916.
  • 25. Bućko M., Róg G.: Electrical conductivity in α- Al2O3 - Ca-β- Al2O3 system; in Fourth Euro-Ceramics, Proceedings of the Fourth European Ceramic Society Conference, Riccione '95, vol.5 Electroceramics; ed.G.Gusmano, E.Traversa; Gruppo Editoriale Faenza Editrice, 1995, pp. 365-372.
  • 26. Bućko M., Róg G.: Properties of ZrO2 - Ca-β-Al2O3 composites; in Fourth Euro-Ceramics, Proceedings of the Fourth European Ceramic Society Conference, Riccione '95, vol. 5 Electroceramics; ed. G. Gusmano, E. Traversa; Gruppo Editoriale Faenza Editrice, 1995, pp. 421-426.
  • 27. Wagner J.: Transport in compounds containing a dispersed second phase, Materials Research Bulletin, 15 (1980) pp. 1690-1701.
  • 28. Meier J.: Defect chemistry and conductivity effects in heterogeneous solid electrolytes Journal of the Electrochemical Society 134 (1987) pp. 1524-35.
  • 29. Jamnik J., Meier J.: Defect chemistry and chemical transport involving interfaces, Solid State tonics 119 (1999) pp. 191-198.
  • 30. Dudney N.: Effect of interfacial space - charge polarization on the ionic conductivity of composite electrolytes, Journal of the American Ceramic Society 68 (1985) pp. 538-45.
  • 31. Bunde A., Dieterich W.: Percolation in composites, Journal of Electroceramics 5(2000) pp. 81-92.
  • 32. Knauth, P.: Ionic Conductor Composites: Theory and Materials, Journal of Electroceramics 5 (2000) pp. 111-125.
  • 33. Uvarov N., Iusupov V., Sharama V., Shukla K: Effect of morphology and particle size on the ionic conductivities of composite solid electrolytes, Solid State Ionics 51 (1992) pp. 41-52.
  • 34. Yahiro H., Baba Y., Eguchi K., Arai H.: High temperature fuel cell with ceria-yttria solid electrolyte, Journal of the Electrochemical Society 135(1988) pp. 2077-2081.
  • 35. Bi Z., Yi B., Wang Z., Dong Y., Wu H., She Y., Cheng M.: A high-performance anode-supported SOFC with LDC-LSGM bilayer electrolytes, Electrochemical and Solid State Letters 7 (2004) pp.l05-107.
  • 36. Wachsman E.D.: Functionally gradient bilayer oxide membranes and electrolytes Solid State Ionics 152-153(2002) pp. 657-662.
  • 37. Peters A, Korte C., Hesse D., Zakharov N., Janek J.: Ionic conductivity and activation energy for oxygen ion transport in superlattices -The multi layer system CSZ (ZrO2+CaO)/Al2O3 Solid State Ionics 178 (2007) pp. 67-76.
  • 38. Chan S.H., Ch en X.J., Khor K.A.: A simple bilayer electrolyte model for solid oxide fuel cells, Solid State tonics 158(2003) pp.29-43.
  • 39. Jacob K.T., Mukhopadhyay S., Shukla A: Gradient solid-electrolyte for use with dissimilar gas electrodes, Solid State tonics 62 (1993) pp. 27-33;
  • 40. Mukhopadhyay S., Jacob K.T.: Theoretical analysis of the electromotive force of a cell incorporating a composition gradient solid electrolyte Journal of the Electrochemical Society 142 (1995) pp. 161-165.
  • 41. Mukhopadhyay S., Jacob K.T.: Thermodynamic study of mixed anionic solid solutions using gradient solid electrolytes, System K2CO3-K2S04 Journal of the Electrochemical Society 140 (1993) pp. 2629-2733.
  • 42. Virkar A.: Theoretical analysis of solid oxide fuel cells with two-layer composite electrolytes: electrolytes stability, Journal of the Electrochemical Society 138 (1991) 1481-1487.
  • 43. Jacob K.T., Dasgupta N., Waseda Y.: Composition-graded solid electrolyte for determination of the Gibbs energy of formation of lanthanum zirconate Journal of the American Ceramic Society 81 (1998) pp. 1926-1930.
  • 44. Mukhopadhyay S., Jacob KT.: Gradient solid electrolytes for thermodynamic measurements: system Na2CO3-Na2SO4 Metallurgical and Materials Transactions 25A (1994) pp. 173-181.
  • 45. Strickler D., Carlson W.: Ionic conductivity of cubic solid solutions in the system CaO-Y2O3-ZrO2 Journal of the American Ceramic Society 47 (1964) pp.122-127.
  • 46. Mori T., Drennan J., Lee Y., Li J., Ikegami T, Improving the ionic conductivity of yttria-stabilised zirconia electrolyte materials, Solid State Ionics I 54-155(2002)pp. 529-533.
  • 47. Bartolomeo E., Grilli M.: YSZ-based electrochemical sensors: From materials preparation to testing in the exhausts of an engine bench test, Journal of the European Ceramic Society 25 (2005) pp. 2959-2964.
  • 48. Kwon O., Choi G.: Electrical conductivity of thick film YSZ Solid State Ionics 177 (2006) pp. 3057-3062.
  • 49. Minh N.: Ceramic fuel cells, Journal of the American Ceramic Society 76 (1993) pp. 563-588.
  • 50. Molenda J.: High - temperature solid oxide fuel cells. New Trends in materials research, Materials Science-Poland 24 (2006) pp. 5-11.
  • 51. Kharton V., Fiueiredo M., Navarro L, Naumovich E., Kovalevsky A., Yaremchenko A., Viskup A., Carneiro A., Margues A., Frade J.: Ceria-based materials for solid oxide fuel cells, Journal of Materials Science 36 (2001) pp. 1105-1117.
  • 52. Minh N.Q.: Solid oxide fuel cell technology-features and applications Solid State Ionics 174 (2004) pp. 271-277.
  • 53. Besra L, Compson Ch., Liu M.: Electrophoretic deposition of YSZ particles on nonconducting porous NiO - YSZ substrate for solid oxide fuel cells applications, Journal of the American Ceramic Society 89 (2006) pp. 3003-3009.
  • 54. Matsuda M., Hosomi T., Murata K., Fukui T., Miyake M.: Fabrication of bilayered YSZ/SDC electrolyte film by electrophoretic deposition for reduced-temperature operating anode-supported SOFC, Journal of Power Sources 165 (2007) pp. 102-107.
  • 55. Krzystek K., Krauz M., Rak Z.: Wytwarzanie ogniw paliwowych stałotlenkowych, Polski Biuletyn Ceramiczny 84(2004) pp. 307-312.
  • 56. Fischer W., Malzbender J., Blass G., Steinbrech R.: Residual stresses in planar solid oxide fuel cells Journal of Power Sources 150 (2005) pp. 73-77.
  • 57. Malzbender J., Steinbrech RW.: Fracture test of thin sheet electrolytes for solid oxide fuel cells, Journal of the European Ceramic Society 27 (2007) pp. 2597-2603.
  • 58. Abraham I., Gritzner G.: Powder preparation, mechanical and electrical properties of cubic zirconia ceramics Journal of the European Ceramic Society 16 (1996) pp. 71-77.
  • 59. Selcuk A., Atkinson A.: Elastic properties of ceramic oxides used in solid oxide fuel cells (SOFC) Journal of the European Ceramic Society 17 (1997) pp. 1523-1532.
  • 60. Adams J., Ruth R., Mazdiyasni K.: Young's modulus, flexural strength, and fracture of yttria-stabilized zirconia versus temperature Journal of the American Ceramic Society 80 (1997) pp. 903-908.
  • 61. Susnik D., Holk J., Hrovat M., Zupancic S.: Influence of alumina addition on characteristics of cubic zirconia Journal of Materials Science Letters 16 (1997) pp. 1118-1121.
  • 62. Yuzaki A., Kishimoto A.: Effects of alumina dispersion on ionic conduction of toughened zirconia based composite Solid State Ionics 116(1999) pp. 47-51.
  • 63. Guo X., Tang Ch., Yuan R.: Grain boundary ionic conduction in zirconia-based solid electrolyte with alumina addition, Journal of the European Ceramic Society 15 (1995) pp. 25-32.
  • 64. Butler E., Drennan J.: Microstructural analysis of sintered high-conductivity zirconia with Al203 additions, Journal of the American Ceramic Society 65 (1982) pp. 474-480.
  • 65. Feighery A., Irvine T.: Effect of alumina additions upon electrical properties of 8 mol.% yttria-stabilised zirconia, Solid State Ionics 121 (1999) 209-216.
  • 66. Mori M., Abe T., Hoh H., Yammato O., Takeda Y., Kawahara T.: Cubic-stabilized zirconia and alumina composites as electrolytes in planar type solid oxide fuel cells Solid State Ionics 74 (1994) pp. 157-162.
  • 67. Kwon N.H., Kim G., H., Song H.S, Lee LH.: Synthesis and properties of cubic zirconia-alumina composite by mechanical alloying, Materials Science and Engineering A 299 (2001) pp. 185-194.
  • 68. Oe K., Kikkawa K., Kishimoto A., Nakamura Y., Yanagida H.: Toughening of ionic conductive zirconia ceramics utilizing a nonlinear effect, Solid State Ionics 91 (1996) 131-136.
  • 69. Guo X., Yuan R.: Roles of alumina in zirconia-based solid electrolyte, Journal of Materials Science 30 (1995) pp. 923-331.
  • 70. Guo X.: Roles of alumina in functional ceramics, Journal of the American Ceramic Society 86(2003) pp. 1867-73.
  • 71. Bućko M.: Selected aspects of conductivity in heterophase ionic conductors, Polish Ceramic Bulletin 66 (2001), pp. 547-554.
  • 72. Bućko M.: Ionic conductivity of alumina - zirconia composites, Polish Ceramic Bulletin 61 (2000), pp. 95-102.
  • 73. Bućko M., Pyda W.: Effect on inclusion size on mechanical properties of alumina toughened cubic zirconia, Journal of Materials Science 40 (2005) pp.5191-5198.
  • 74. Chen X., Yang B.: A new approach for toughening of ceramics Materials Letters 33 (1997) pp. 237-240.
  • 75. Liu X., Chen X.: Toughening of 8Y-FSZ ceramics by neodymium titanate secondary phase Journal of the American Ceramic Society 88 (2005) pp. 456-558.
  • 76. Milliken Ch., Guruswamy S., Khandkar A.: Properties and performance of cation - doped electrolyte materials in solid oxide fuel cell application. Journal of the American Ceramic Society 85 (2002) pp. 79-86.
  • 77. Lu C.. Worell W., Gorte R., Vohs J.: SOFCs for direct oxidation of hydrocarbons fuels with samaria - doped ceria electrolyte, Journal of the Electrochemical Society 150 (2003) pp.354-358.
  • 78. Zhu S., Xia Ch., Meng G.: Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells, Journal of Power Sources 115 (2003) pp. 44-48.
  • 79. Mukundan E., Brosha E., Brown D., Garzon F.: Ceria-electrolyte-based mixed potential sensors for the detection of hydrocarbons and carbon monoxide, Electrochemical and Solid State Letters 2 (1999) pp. 412-414.
  • 80. Dudek M., Molenda J.: Preparation and properties of CeO2-based electrolytes, Polish Bulletin Ceramic 84 (2004) pp. 177-182.
  • 81. Xiong Y., Yamaji K., Horita T., Sakai N., Yokokawa H.: Hole and electron conductivity of 20% mol ReO1.5 Re = Yb, Gd, Srn, Y, Nd, La Journal of the Electrochemical Society 151 (2004), pp. 407- 412.
  • 82. Xia Ch., Liu M.: Low-temperature SOFCs-based on Ce0.9Gd0.1O2 fabricated by dry pressing, Solid State Ionics 144 (2001) 249-255.
  • 83. Sameshima S., Hirata Y., Ehira Y.: Structural change in Sm- and Nd-doped ceria under a low oxygen partial pressure, Journal of Alloys and Compounds 408-412 (2006) pp. 628-631.
  • 84. Abrantes J., Perez-Coll D., Nuntez P., Frade J.: Electronic transport in Ce0.8Sm0.2O1.9 samples, Electrochimica Acta 48 (2003) pp. 2761-2766.
  • 85. Inaba H., Tagawa H.: Ceria -based solid electrolytes, Solid State Ionics 83 (1996) pp. 1-16.
  • 86. Doshi R., Richards V., Carter J., Wang X., Krumpelt M.: Development of solid-oxide fuel cells that operate at 500°C, Journal of the Electrochemical Society146 (1999) pp.1273-l278.
  • 87. Matsui T., Inaba M., Mineshige A., Ogumi Z.: Electrochemical properties of ceria-based oxides for use in intermediate-temperature SOFCs Solid State Ionics 176 (2005) pp. 647-654.
  • 88. Herle J., Senevirate D., McEvoy A.: Lanthanide co-doping of solid electrolytes: AC conductivity behaviour, Journal of the European Ceramic Society 19 (1999) 837-841.
  • 89. Dudek M.: Ceramic oxide electrolytes based on CeO2 preparation, properties and possibility of application to electrochemical devices, Journal of the European Ceramic Society (2008) submitted to print.
  • 90. Wang F., Chen S., Cheng S.: Gd3+ and Sm3+ co-doped ceria based electrolytes for intermediate temperature solid oxide fuel cells, Electrochemistry Communications 6 (2004) pp. 743-746.
  • 91. Maricle D.L, Swarm T.E., Karavolis S.: Enhanced ceria - a low-temperature SOFC electrolyte, Solid State Ionics 52(1992) 173-178.
  • 92. Uu Y., He T., Wang J., Shu W.: The effect of Pr co-dopant on the performance of solid oxide fuel cells with Sm-doped ceria electrolyte, Journal of Alloys and Compounds 389 (2005) pp. 317-322.
  • 93. Dudek M., Ziewiec K: Preparation and the electrolytic properties of CaO-Sm2O3CeO2 system; Advances in Materials Science 6 (2006) pp. 53-58.
  • 94. Soral P., Pal U., Worrel W.: Comparison of power densities and chemical potential variation in solid oxide fuel cells with multilayer and single layer oxide electrolytes, Journal of the Electrochemical Society 145 (1998) pp. 99-106.
  • 95. Hirabayashi D., Tomita A., Teranishi S., Hibinio T., Sano M.: Improvement of a reduction-resistant Ce0.8Sm0.2O1.9 electrolyte by optimizing a thin BaCel-xSmxO3-a layer for intermediate-temperature SOFCs Solid State Ionics 176 (2005) pp. 881-887.
  • 96. Mitsuyasu H., Nonaka Y., Eguchi K: Analysis of solid state reaction at the interface of yttria-doped ceria/yttria-stabilized zirconia, Solid State Ionics 113-115 (1998) pp. 279-284.
  • 97. Horita T., Sakai N., Yokokawa H., Dokiya M., Kawada T., Herle J., Sasaki K: Ceria-zirconia composite electrolyte for solid oxide fuel cells, Journal of Electroceramics 2 (1997) pp. 155-164.
  • 98. Park Y., Yoon H., Wachsman E.: Fabrication and characterization of high-conductivity bilayer electrolytes for intermediate-temperature solid oxide fuel cells, Journal of the American Ceramic Society 88 (2005) pp. 2402-2408.]
  • 99. Wachsman E.: Functionally gradient bilayer oxide membranes and electrolytes, Solid State Ionics 152-153 (2002) pp.657-662.
  • 100. Wachsman E., Jayaweera P., Jiang N., Lowe D., Pound B.: Stable High Conductivity Ceria/Bismuth Bilayered Electrolytes, Journal of the Electrochemical Society 144 (1997) pp. 233-236.
  • 101. Fergus J.: Using chemical sensors to control molten metal processing, The Minerals, Metals and Materials Society 52 (2000) pp. 221-230.
  • 102. Worrel W., Liu Q.: Development of an extended - life oxygen sensor for iron and steel melts Solid State Ionics 40-41(1990) pp. 760-763.
  • 103. Weyl A., Tu S., Janke D.: Sensors based on new oxide electrolyte and oxygen reference materials for on-line measurements in steel research, Steel Research 65 (1994) pp.167-172.
  • 104. Subbarao E., Sutter P., Hrizo J.: Defect structure and electrical conductivity of ThO2-Y2O3 solid solutions, Journal of the American Ceramic Society 48 (1965) pp. 443-446.
  • 105. Ramanarayanan T., Worell W.: Limitation in the use of solid state electrochemical cells for high - temperature equilibrium measurements, Canadian Metallurgical Quarterly 13 (1974) pp. 325-329.
  • 106. Fischer W., Janke D., Schulenberg M.: Calciumzirkonat als Festelektrolyt bei Temperaturen um 1600°C Archiv das Eissenhütenwesen 47 (1976) pp. 525-530.
  • 107. Janke D.: Oxygen probes based on calcia-doped hafnia or calcium zirconate for use in metallic melts, Metallurgical Transaction BB (1982) pp. 227-235.
  • 108. Pandit S., Weyl A., Janke D.: High-temperature ionic and electronic conduction in zirconate and hafnate compounds, Solid State Ionics 69(1994) pp. 93-99.
  • 109. Dudek M., Bućko M.: Electrical properties of stoichiometric and nonstoichiometric CaZrO3, Solid State Ionics 157(2003) pp. 183-187.
  • 110. Dudek M.: Właściwości elektryczne i mechaniczne elektrolitów ceramicznych cyrkonian wapnia regularny roztwór stały tlenku wapnia w dwutlenku cyrkonu. Materiały Ceramiczne 3 (2002) pp. 11-18.
  • 111. Dudek M., Róg G., Bogusz W., Kozłowska-Róg A., Bućko M., Zych L.: Calcium zirconate as a solid electrolyte for electrochemical devices applied in metallurgy, Materials Science-Poland 24 (2006) pp 253-260.
  • 112. Tien T.Y.: Electrical conductivity in the system CaZrO3-ZrO2, Journal of the American Ceramic Society 11(1964) pp. 430-433.
  • 113. Janke D., Richter H.: Low oxygen activities in steel melts - Possibilities and limits of the solid electrolyte measuring technique, Archiv das Eissenhütenwesen 50 (1979) pp. 93-100.
  • 114. Liu Q.: The development of high temperature electrochemical sensors for metallurgical processes, Solid State Ionics 86-88 (1996) 1037-1043.
  • 115. Dudek M., Rag G., Bogusz W., Bućko M., Kozłowska-Róg A.: Kompozytowe elektrolity stałe zawierające CaZrO3 jako elementy ogniw elektrochemicznych stosowanych w metalurgii Kompozyty/Composites 4 (2005) pp. 14-19.
  • 116. Dudek M., Bogusz W.: Elektrolity stale z układu CaO-ZrO2 jako elementy sond elektrochemicznych stosowanych w metalurgii, Polski Biuletyn Ceramiczny 91(2005) pp. 159-166.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0030-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.