PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quantum robots, now or never?

Autorzy
Identyfikatory
Warianty tytułu
PL
Roboty kwantowe teraz czy nigdy?
Języki publikacji
EN
Abstrakty
EN
The paper presents the state of the art in the emerging field of quantum robotics. Quantum robot is a robot controlled by a quantum computer. In one variant this robot "lives" in a quantum world and bas quantum sensors and effectors, in the other variant the robot is a standard robot with standard sensors and effectors but controlled by a quantum computer. While the robots living in quantum world may be not built soon, standard robots with quantum control or simulated quantum control can be built right now. We illustrate also how quantum robotics can be taught to young audiences using standard Lego robotic kits with the quantum simulation software. The concept of a class in quantum robotics is presented that bas be en taught with huge success to especially talented 14-15 years old Oregon teenagers.
PL
Przedstawiono stan prac nad robotami kwantowymi. Robot kwantowy to robot sterowany komputerem kwantowym. W jednym wariancie robot przebywa w mikroświecie mechaniki kwantowej a jego czujniki i efektory są także kwantowe. W innym wariancie, przedstawionym w tym artykule, robot jest standardowy ale jest sterowany komputerem kwantowym. Podczas kiedy roboty pierwszego typu nie powstaną prędko, standardowe roboty sterowane przez komputery kwantowe mogą być budowane już dziś. Przedstawiamy pokrótce stan prac nad robotami kwantowymi i kierunki przyszłych badań. Wreszcie piszemy o tym jak te idee mogą być wprowadzone do szkół średnich przy użyciu robotów Lego i symulatorów kwantowych. W klasie prowadzonej przez autora dla wybitnie uzdolnionych 14-latków, uczniowie budowali sterowane kwantowymi symulatorami roboty, pisali oprogramowanie dla rozpoznawania obrazów i badali uogólnienia znanych algorytmów kwantowych na logikę wielowartościową.
Twórcy
autor
  • Department of Electrical and Computer Engineering, Portland State University, Portland, Oregon, USA
Bibliografia
  • [1] Aharonov D., A Ta-Shma A: Adiabatic Quantum State Generation and Statistical Zero Knowledge. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing. ACM Press, New York, 2003, pp. 20-29.
  • [2] Albert D.: RCB 1st draf. A command out1ine. private communication.
  • [3] Badler, N. I., Bindiganavale, R., Granieri, J. P., Wei, S., Zhao, X.: Posture Interpolation with Collision Avoidance. In: Proc. Computer Animation, 1994, pp. 13-20.
  • [4] Badler, N. I., Smoliar, S. W.: Digital Representation of Human Movement. Computer Surveys, Vol. 11, No 1, March 1979, pp. 19-38.
  • [5] Bae J.H., Bae Ch-B., Lee G.B., Kim D.H., Perkowski, M., Khan, M.H.A., Minimization of Ternary and Mixed Binary-Ternary Permutative Quantum Circuits. submitted.2007.
  • [6] Beach G., Ch. Lomont, Ch. Cohen, Quantum Image Processing. In: Proc. 32nd Applied Imagery Patter Recognition Workshop (AIPR'03), Washington DC, 2003, p. 39.
  • [7] Benioff P., Quantum Robots and Environments. Phys. Rev. A 58, Issue 2, August 1998, pp. 893-904.
  • [8] Benioff P., Space Searches with a Quantum Robot. arXiv:quant-ph/00O3006 v2, 26 Jun. 2001.
  • [9] Braitenberg V.: Vehicles: Experiments in Synthetic Psychology. MIT Press; Reprint edition, 1986.
  • [10] Brawo Ch., Metzger N., Biamonte J., Lukac M., Aulakh A, Devanath L, Sajkowski M., T. Stenzel, Kim D.H., Sasao, T., Perkowski M.: Hexor, a Walking and Talking Robot with Quantum and Fuzzy Inference. In: Proc. ULSI, Singapore, http://www.ntu.edu.sg/home/efalkowski/ismvl/
  • [11] Breazeal C., Designing Sociable Robots. MIT Press, 2002.
  • [12] Breazeal C., Scassellati B.: How to build robots that make friends and influence people. in Proceedings of IROS, 1999, pp. 858-863.
  • [13] Brooks R.A., Breazeal C., Marjanovic M., Scassellati B., Williamson M.M.: The Cog Project: Building a Humanoid Robot. in IARP First International Workshop on Humanoid and Human Friendly Robotics, (Tsukuba, Japan), Oct. 26-27 1998. pp. I-1.
  • [14] Brooks R.: A Robust Layered Control System for a Mobile Robot. IEEE Journal R&A, Vo1.2, No. 8, 1986. pp. 14-23.
  • [15] Brooks R.: Intelligence without reason. In: Proc. of the IJCAI-91, 1991. pp. 569-595.
  • [16] Calvert T.W., Bruderlin A., Mah S., Schiphorst T., Welman C.: The Evolution of an Interface for Choreographers. Interchi, 1993, pp. 24-29.
  • [17] Causley M.: An introduction to Benesh Movement Notation. ISBN: 0836992806, 1980.
  • [18] Choi B.: Automata for Learning Sequential Tasks, New Generation Computing: Computing Paradigms and Computational Intelligence. Vol. 16, No. I, 1998. pp. 23-54.
  • [19] Curtis D., Meyer D.A.: Towards quantum template matching. Proc. SPIE, vol. 5161 (Quantum Communications and Quantum Imaging), SPIE Press, 2004, pp. 134-141.
  • [20] Dong D., Chen Ch., Zhang Ch., Chen Z.: An Autonomous Mobile Robot Based on Quantum Algorithm. preprint.
  • [21] DWAVE Corporation: http://dwave.wordpress.com/2007/0 1/ 19/quantum-computing-demoannouncement/. Look also to many materials linked from this webpage.
  • [22] Fan Y.: Generalization of Deutsch-Jozsa algorithm to Multiple-Valued Quantum Logic. Proc. ISMVL 2007, http://ismv1O7.ifi.uio.no/.
  • [23] Fromherz M.P.J., Hogg T., Shang Yi.: Modular Robot Control and Continuous Constraint Satisfaction. Proc. IJCAI-01 Workshop on Modeling and Solving Problems with Constraints, Aug. 2001. http://citeseer.ist.psu.edu/499559.html
  • [24] Giesecke N., Kim D.H., Hossain S., Perkowski M.: Search for Universal Ternary Quantum Gate Sets with Exact Minimum Costs. Proc. RM 2007. http://ismv107.ifi.uio.no/
  • [25] Giesecke N.: Ternary Quantum Logic. M.S. thesis, PSU, Dept ECE, 2006.
  • [26] Green A, Huttenrauch H., Norman M., Oestreicher L, Severinson Eklundh K.: User Centered Design for Intelligent Service Robots. Proc. Intern. 2000 Workshop on Robot and Human Interactive Communication, Osaka, Japan, September 27-29, pp. 161-166.
  • [27] Gualandi S., Tranchero B.: Concurrent constraint programming-based path planning for uninhabited air vehicles. Proceedings of SPIE, 2004 - citeseer.comp.nus.edu.sg
  • [28] Hogg D.W., Martin F., Resnick M.: E&L Memo No 13. MIT Media Lab. Cambridge, MA, 1991, http//citeseer.nj.nec.com/hogg91 braitenberg.html
  • [29] Honda Humanoid Robot Project http://world.honda.com/robot/
  • [30] Huang Q., Yokoi K., Kajita S., Kaneko K., Arai H., Koyachi N., Tanie K.: Planning Walking Patterns for a Biped Robot. IEEE Trans. Rob and Autom, Vol. 17, No. 3, June 2001. pp. 280-289.
  • [31] Hung W.N.N., Yang G., Song X., Perkowski M.: Optimal Synthesis of multiple output Boolean functions using a set of quantum gates by symbolic reachability analysis. IEEE Transactions on Computer-Aided Design, Volume 25, No. 9, 2006, pp. 1652-1663.
  • [32] Human Body Project Webpage. http://www.fuzzgun.btinternet.co.uk/ rodnev/components.html
  • [33] Human Body Project Webpage. https://sourceforge.net/projects/hbp/
  • [34] Khan F., Perkowski M.: Synthesis of Hybrid and d-Valued Quantum Logic Circuits by Decomposition. Theoretical Computer Science. Vol. 367, Issue 3, 2006, pp. 336-346.
  • [35] Khan M.H.A., Perkowski M.: Quantum Realization of Ternary Encoder and Decoder. In: Proc. International Symposium on Representations and Methodologies for Emergent Computing Technologies, Tokyo, Japan, September 2005. pp. 23 - 27.
  • [36] Khan M.H.A., Perkowski M.: Quantum Realization of Ternary Parallel Adder/Subtractor with Look-Ahead Carry. In: Proc. International Symposium on Representations and Methodologies for Emergent Computing Technologies, Tokyo, Japan, September 2005. pp. 15-22.
  • [37] Khan M.H.A., Perkowski M.: Genetic Algorithms Based Synthesis of Multi-Output Ternary Functions Using Quantum Caseade of Generalized Ternary Gates. special issue of International Journal on Multiple-Valued Logic and Soft Computing, Tatjana Kalganova, editor. In print
  • [38] KHR-l Hardware Manual. http://www.kondo-robotcom/pdf/SoftwareManualEnglish.pdf
  • [39] Kim D.H., Brawn Ch., Sajkowski M., Stenzel T., Sasao T., Allen J., Lukac M., Wang T., Perkowski M.: Artificial Immune-Neuro-Fuzzy System to control a walking robot Hexor. In: Proc. ULSI, Singapore 2006. http://www.ntu.edu.sg/home/efalkowski/ismvl/
  • [40] Kumar V.: Algorithms for constraint-satisfaction problems: A survey. AI Magazine, 13 (1). 1992. pp. 32-44.
  • [41] Kumar M., Year B., Metzger N., Wang, Y., Perkowski M.: Realization of Incompletely Specified Functions in Minimized Reversible Circuits. Proc. RM 2007. http://ismv107.ifi.uio.no/
  • [42] Lee S., Lee SJ., Kim T., Lee J-S., Biamonte J., Perkowski M.: The Cost of Quantum Gate Primitives. Journal of Multi-valued Logic and Soft Computing, Vol. 12, No. 5-6. 2006.
  • [43] Lukac M., Perkowski M., Goi H., Pivtoraiko M., Yu Ch-H., Chung K., Jee H., Kim B.G. , and Kim Y.-D.: Evolutionary approach to Quantum and Reversible Circuits synthesis. Artificial Intelligence Review Journal, Special Issue on Artificial Intelligence in Logic Design, S.Yanushkevich guest editor, 2003.
  • [44] Um H, Ishii A, Takanshi A.: Basic motional walking using a biped humanoid robot. In: Proceedings of the IEEE SMC, 1999.
  • [45] Lukac M., Perkowski M.: Quantum behaviors: Measurement and synthesis. Reed-Muller 2007, 2007. http://ismv107.ifi.uio.no/
  • [46] Lukac M., Perkowski M.: Quantum mechanical model of emotional robot behaviors. In: Proceedings of the ISMVL 2007, 2007. http://ismv107.ifi.uio.no/
  • [47] Lukac M.: Robots, Emotions, Incompleteness and Quantum Computing, Ph.D. Thesis in preparation, PSU, 2006.
  • [48] U L, Thornton M.A., Perkowski M.: A Quantum CAD Accelerator Based on Grover's Algorithm for Finding the Minimum Fixed Polarity Reed-Muller Form. Proc. ISMVL 2006, pp. 33.
  • [49] Mackworth A.: Consistency in networks of relations. Artificial Intelligence, 8(1): 1977. pp. 99-118.
  • [50] Minton S., Johnston M.D., Philips A.B., Laird P.: Solving Large-Seale Constraint Satisfaction and Scheduling Problems Using a Heuristic Repair Method. Proc. of AAAI-90, Boston, MA, 1990. pp. 17-24.
  • [51] Mizel A., Udar D., Mitchell M.: Simple proof of equivalence between adiabatic quantum computation and the circuit model. APS March Meeting, Denver, Colorado, 2007. http://www.aps.org/meeting/march
  • [52] Nakata T., Sato T., Mori T.: Expression of emotion and intention by robot body movement. In: Proceedings of the 5th International Conference on Autonomous Systems, 1998.
  • [53] Nielsen M., Chuang I.: Quantum Computation and Quantum Information, Cambridge University Press, 2000.
  • [54] NQC-Not Quite C-language, http://bricxcc.sourceforge.net/
  • [55] OpenCV. http://www.intel.com/technology/computing/opencv/
  • [56] Fai D.K., Barman R.: Constraint Programming for Platonic Beast Legged Robots. In: Proc. Intern. Conf. on Robotics and Automation, Minneapolis, 1996
  • [57] Perkowski M.: Quantum Robotics for Teenagers, book in preparation. 2007.
  • [58] Perkowski M., Sasao T, Kim J-H., Lukac M., Allen J., Gebauer S.: Hahoe KAIST Robot Theatre: Learning Rules of Interactive Robot Behavior as a Multiple-Valued Logic Synthesis Problem. In: Proc. ISMVL 2005, pp. 236-248.
  • [59] Perkowski M.: Quantum Algorithms for Robot Vision. Report, PSU Intelligent Robotics Laboratory, 2007.
  • [60] Perkowski M.: Multiple-Valued Quantum Circuits and Research Challenges for Logic Design and Computational Intelligence Communities. Invited Paper, IEEE Connections, IEEE Computer Intelligence Society, November 2005, pp. 6-12.
  • [61] Perlin K., Gikdberg A.: Improv: A System for Scripting Interactive Actors in Virtual Worlds. Computer Graphics Proceeding, 1996, pp. 205-216.
  • [62] Raghuvanshi A., Fan Y., Woyke M., Perkowski M.: Quantum Robots for Teenagers. Proc. ISMVL 2007. http://ismv107.ifi.uio.no/
  • [63] Raghuvanshi A.: Drive Kinematics in Quantum Braitenberg Vehicles. Report, PSU ECE, 2006.
  • [64] Robosavvy Company Webpage. http://www.robosavvv.com/
  • [65] Ryman R., Singh B., Beatty J., Booth K.: A Computerized Editor of Benesh Movement Notation. Dance Research Journal, 16(1), 1984, pp. 27-34.
  • [66] Schiphorst T.: LifeForms: Design Tools for Choreography, Dance and Technology I: Moving Toward the Future. 1992, pp. 46-52.
  • [67] Song X., Yang G., Perkowski M.: Algebraic Characteristics of Reversible Gates. Theory of Computing Systems (Mathematical Systems Theory), Springer Verlag. 39(2), 2006, pp. 311-319.
  • [68] Tang Z., Zhou Ch., Sun Z.: Humanoid Walking Gait Optimization Using GA-based Neural Network. ICNC (2) 2005, pp. 252-261.
  • [69] The programming environment can be downloaded from http://www-education.rec.ri.cmu.edu/robotc/robotc/index.html
  • [70] Waltz D.L.: Understanding Line Drawings of Scenes with Shadows. In: P. H. Winston ed. Psychology of Computer Vision. McGraw-Hill, N.Y., 1975. pp. 19-91.
  • [71] Williams Q., Bogner S., Kelley M., Castillo c.: KHR-1 and the HBP Interface. Manual for installing, running and interfacing the Human Body Project (HBP) with KHR-1 for mimicking and control. Users' Manual, ECE PSU, 2006.
  • [72] Wong A.K.C., Lu S.W., Rioux M.: Recognition and shape synthesis of 3D objects based on attributed hypergraphs. IEEE Trans. on Pattern Anal. and Mach. Intel., 1989. II. pp. 279-290.
  • [73] Yang G., Xie F., Song X., Perkowski M.: Universality of two-qudit ternary reversible gates. Journal of Physics A: Mathematical and General, The Institute of Physics Publishing, Journal of Physics A. Mathematical and General, 39, 2006. pp. 7763-7773.
  • [74] Yang G., Song X., Perkowski M., Wu J.: Realizing ternary quantum switching networks without ancilla bits. Journal of Physics A. Mathematical and General, 38, 2005, pp. 9689-9697.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0029-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.