Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper describes possibility of application of hardness measurements for define of cavitation intensity absorbed in a volume of a solid. The assessment of cavitation aggressiveness assumes that power absorbed by collapsing bubbles is changed into hardness increase totality due to work hardening of surface layer under cavitation loading. rower of cavitation provided into surface layer should not induce cracks and elastic deformation and thermal effects are neglected. In paper state of aft concerning investigations on cavitation intensity is also presented.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
167--172
Opis fizyczny
Bibliogr. 26 poz., rys.
Bibliografia
- [1] Apfel R.E.: Sonic effervescence: a tutorial on acoustic cavitation. Journal of the Acoustical Society of America 101(3) (1997), pp. 1227-12370
- [2] Pestman J.M., Engberts J.B.F.N., Dejong F.: Sonochemistry-theory and applications. Journal of the Royal Netherlands Chemical Society 113(12) (1994), ppo 533-542.
- [3] Lauterbom W., Ohl C.D.: The perculiar dynamics of cavitation bubbles. Applied Scientific Research 58(1-4) (1998), ppo 63-76.
- [4] Abramov V., Abramov O., Bulgakov V., Sommer F.: Solidification of aluminium alloys under ultrasonic irradiation using water-cooled resonator. Materials Letters 37 (1998) 27-34.
- [5] Borthwick K.A.J., Coakley W.T., McDonnell M.B., Nowotny H., Benes E., Gröschl M.: Development of a novel compact sonicator for cell disruption. Journal of Microbiological Methods 60 (2) (2005), pp.207-216.
- [6] Joshi A., Raje J.: Sonicated transdermal drug transport. Journal of Controlled Release 83(1) (2002), pp.13-22.
- [7] Romdhane M., Gourdon C., Casamatta G.: Time response modeling of an ultrasonic thermo-electric probe. Ultrasonics 34 (1996), pp. 835-845.
- [8] Lohrberg H., Voss B., Schlachta C., Stoffel B., Glesner M.: Impeller integrated measurement of cavitation erosive aggressiveness. Mechatronics 12(8) (2002), pp. 1047-1057.
- [9] Ho Y, Oba R: Comparison between four practical methods to detect the erosive area in cavitating flows. In: XVII IAHR Symposium. Beijing, 1994.
- [10] Le Fur B, David J-F.: Comparison between erosion speeds deducted from pitting tests and mass lass tests for twa stainless steels. In: International Symposium on Cavitation Cav'95. Deauville, 1995.
- [11] Franc J.P, Michel J.M, Trong H.: From pressure pulses measurement to mass lass prediction: The analysis of a method. In: Second International Symposium on Cavitation. Tokyo, 1994.
- [12] Maeda M, Yamada I., Masashi T.: The prediction of cavitation erosion on pump impeller by measuring of cavitation bubble collapse impact loads. In: Second International Symposium on Cavitation. Tokyo, 1994.
- [13] Pugin B.: Qualitative characterisation of ultrasound reactors for heterogeneous sonochemistry. Ultrasonics 25 (1987), pp. 49-55.
- [14] Marangopoulos LP., Martin C.J., Hutchinson J.M.S., Measurement of field distributions in ultrasonic cleaning vessels: implications for c1eaning efficiency. Phys. Med. Biol. 40 (1995), pp. 1897-19 p8.
- [15] Zeqiri B., Hodnett M., Carroll A. J.: Studies of a novel sensor for assessing the spatial distribution of cavitation activity within ultrasonic cleaning vessels. Ultrasonics 44(1) (2006), pp.73-82.
- [16] Maisonhaute E., Javier Del Campo F., Compton. RG.: Microelectrode study of single cavitational bubbles induced by 500 kHz ultrasound. Ultrasonics Sonochemistry 9(5) (2002), pp. 275-283.
- [17] Margulis M.A.: Sonochemical Reactions and Sonoluminescence, in: M. Chimia (Ed.), 1986, pp. 286 (Russian).
- [18] Margulis M.A.: Sonochemistry and Cavitation. (1996), Gordon & Breach, London.
- [19] Jones L.R., Edwards D.H.: An experimental grudy of forces generated by the collapse of transient cavities in water. J. Fluid Mech. 7 (1960), pp. 569.
- [20] Kirejczyk J.: The energy flux of cavitating flow. Proc. 6th Int. Conf. on fluid Machinery. Budapest, 1979, pp. 555.
- [21] Okada T., Iwai Y., Azazu K: A study of cavitation bubble collapse pressures and erosion. Part I: a method for measurement of collapse pressures. Part II: Estimate of erosion from the distribution of bubble collapse pressure. Wear 133 (1989), pp. 219-242.
- [22] Momma T., Lichtarowicz A: A study of pressures and erosion produced by collapsing cavitation. Wear 186-187 (1995), pp. 425-436.
- [23] Chen X., Xu R.Q., Shen Z.H., Lu J., Ni X.W.: Optical investigation of cavitation erosion by laser-induced bubble collapse. Optics and Laser Technology 36(3) (2004), pp. 197-203.
- [24] Dular M., Bachert B., Stoffel B., Sirok B.: Relationship between cavitation structures and cavitation damage. Wear 257(11) (2004), pp.1176-1184.
- [25] ASTM Standard G32-85.
- [26] CSN 015082-76 (Czech Standard).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0027-0020