PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Degradation of composite implants determined in creep tests

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Investigations presented in ibis study show the effects of conditions simulating the human body, on the mechanical properties of biosorbable co-polymer of poly(lactide-co-glycolide) - PGLA, and its composites with short carbon fibres (PGLA/CF) and nano-particles of hydroxyapatite (PGLA/HAp). Materials were subjected to constant mechanical stresses (creep tests) in "in vitro" conditions (Ringer's solution). Their lifetimes were calculated on the basis of obtained results. Obtained results allows for determination of their suitability for medical applications. The longest lifetime values were obtained for composites reinforced with carbon fibre. The introduction of hydroxyapatite to polymer matrix shortened life-time in relation to PGLA but significantly enhanced its bioactivity. After the matrix material degradation the presence of bioactive particles facilitates the regeneration of deseased tissue. Since poly(lactide-co-glycolide) is a biosorbable material, and it is difficult to predict its long term behaviour on the basis of short-term tests, the long-term creep tests seem to be necessary.
Rocznik
Strony
92--97
Opis fizyczny
Bibliogr. 12 poz., rys., tab.
Twórcy
autor
autor
  • AGH - University of AGH, University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, Krakow, Poland
Bibliografia
  • [1] Mano J.F., Sousa RA., Boesel L.F., Neves N.M., Reis RL: Bioinert, biodegradable and injectable polymeric matrix composites for bard tissue replacement: state of the aft and recent developments, Composites Science and Technology 64 (2004), pp. 789-817.
  • [2] Ignjatovic N., Uskokovic D.: Synthesis and application of hydroxyapatite/polylactide composite biomaterial, Applied Surface Science 238 (2004), pp. 314 - 319.
  • [3] Shikinami Y., Okuno M.: Bioresorbable devices marle of forged composites of hydroxyapatite (HA)particles and polu L-lactide (PLLA). Practical properties of miniscrews and miniplates, Biomaterials 22 (200l), pp. 3197 - 3211.
  • [4] Teoh S.H.: Fatigue of biomaterials: a review, International J. of Fatigue 22 (2000), pp. 825 - 837.
  • [5] M.S.Abu Bakar, P.Cheang, K.A. Khor: Mechanical properties of injection molded hydroxyapatite - polyetheretherketone biocomposites, Comp. Scien. And Tech., 63 (2003), s. 421 - 425.
  • [6] Deng M., Shalaby S.W.: Properties of self-reinforced ultra-high-molecular-weight polyethylene composites, Biomaterials, 18 (1997), s. 645 - 655.
  • [7] Suwanprateeb J., Tanner K.E., Turner S., Bonfield W.: Influence of Ringer's solution on creep resistance of hydroxyapatite reinforced polyethylene composites, l Mater. Sci., Mater. in Med. 8, ( 1997), pp. 469 - 472.
  • [8] R.A. Latour, J. Black: Development of FRP composite structural biomaterials: Fatigue strength of the fiber/matrix interfacial bond in simulated in vivo environments, Journal of Biomed. Mat. Res., 27 (1993), s. 1281-1291.
  • [9] Dobrzyński P., Kasperczyk J., Bero M.: Nowe możliwości syntezy i zastosowania w medycynie biodegradowalnych kopolimerów glikolidu nie zawierających cyny, Inż. Biomateriałów, (2002) Rok V, Uf 23 - 25, 27 - 29.
  • [10] Haberko K., Bućko M., Haberko M., Mozgawa W., Pyda A., Zarębski J.: Hydroksyapatyt naturalny - preparatyka, właściwości, Inż. Biomateriałów, (2003) Rok VI, nr 30 - 33, 32 -38.
  • [11] MacLeod A.A.: Design of plastic Structures for Complex Static Stress Systems, Industrial and Engineering Chemistry, (1955), 47, s.1319 -1323.
  • [12] Nahum A.M., Melvin J. Ed.: The Biomechanics of Trauma, Norwalk 1985.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0027-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.