PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Environmental degradation of materials for nuclear waste repositories engineered barriers

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Several countries are considering geological repositories for the storage of nuclear waste. Most of the environments for these repositories will be reducing in nature, except for the repository in the DS, which is going to be oxidizing. For the reducing repositories, alloys such as carbon steel, copper, stainless steels and titanium are being evaluated. For the repository in the DS, same of the most corrosion resistant commercially available alloys are being investigated. This paper presents a summary of the behavior of the different materials under consideration for the repositories and the current understanding of the degradation modes of the proposed alloys in ground water environments from the point of view of general corrosion, localized corrosion and environmentally assisted cracking.
Słowa kluczowe
Rocznik
Strony
40--53
Opis fizyczny
Bibliogr. 57 poz., tab.
Twórcy
autor
  • Lawrence Livermore National Laboratory, Livermore, CA 94550, US
Bibliografia
  • [1] P. A. Baisden and C. E. Atkins-Duffin, "Radioactive Waste Management," Chapter 7 in Handbook of Nuclear Chemistry, Lawrence Livermore National Laboratory, Report Number UCRL-JC-150549,2002
  • [2] D. W. Shoesmith, Corrosion, 62, 703, 2006.
  • [3] Nuclear Energy Agency, "Engineered Barrier Systems and the Safety of Deep Geological Repositories," Organisation for Economic Co-Operation and Development (OECD Publications, 2003: Paris, France)
  • [4] P. A. Witherspoon and G. S. Bodvarsson, "Geological Challenges in Radioactive Waste Isolation - Third Worldwide Review," Lawrence Berkeley Laboratory, Report LBNL-49767, 2001
  • [5] R. B. Rebak and R. D. McCright, ASM Metals Handbook Volume 13C, p. 421 (ASM International, Materials Park, OH 2006).
  • [6] D. W. Shoesmith, B. M. Ikeda, F. King and S. Sunder, "Prediction of Long Term Behavior for Radioactive Nuclear Waste Disposal," in Research Topical Symposia - Life Prediction of Structures Subject to Environmental Degradation, p. 101 (NACE International, 1996: Houston, TX)
  • [7] L. O. Werme, "Fabrication and Testing of Copper Canister for Long Term Isolation of Spent Nuclear Fuel," Vol. 608, p. 77 (Materials Research Society, 2000: Warrendale, PA)
  • [8] G. M. Gordon, Corrosion, 58, 811 (2002)
  • [9] R. L. Clark, "Proposed Amendments to the Environmental Radiation Protection Standards for Yucca Mountain, Nevada" 11th International High Level Radioactive Waste Management conference proceedings, April 30 - May 4, 2006, Las Vegas, NV, pp. 1124-1130 (American Nuclear Society, 2006: La Grange Park, IL)
  • [10] A. A. Sagües, "Nuclear Waste Package Corrosion Behavior in the Proposed Yucca Mountain Repository," in Scientific Basis for Nuclear Waste Management XXII, Vol. 556, p. 845 (Materials Research Society, 1999: Warrendale, PA)
  • [11] D. D. Macdonald, M. Urquidi-Macdona1d and J. Lolcma, J., "Deterministic Predictions of Corrosion Damage to High Level Nuclear Waste Canisters," ASTM Special Technical Publication, p. 143, (ASTM International, 1994: West Conshohocken, PA)
  • [12] T. Shibata, "Statistical and Stochastic Aspects of Corrosion Life Predictions," in "A Compilation of Special Topic Reports" compiled and edited by L.M. Wong and J. H. Payer, pp. 9-1 (Waste Package Materials Performance Peer Revie, 31 May 2002)
  • [13] M. Pourbais "Atlas of Electrochemical Equilibria in Aqueous Solutions" (National Association of Corrosion Engineers, 1974: Houston, TX)
  • [14] J. P. Simpson, R. Schenk and B. Snecht, "Corrosion Rate of Unalloyed Steels and Cast Irons in Reducing ranitic round Waters and Chloride Solutions," in Scientific Basis for Nuclear Waste Management IX, Vol. 50, p. 429 (Materials Research Society, 1986: Warrendale, PA)
  • [15] P. Marsh, O. J. Taylor, I. D. B1and, C. Westcott, P. W. Tasker and S. M. Sharland, "Evaluation of the Localied Corrosion of Carbon Steel Overpacks for Nuclear Waste Disposal in Oranite Environments," in Scientific Basis for Nuclear Waste Management IX, Vol. 50, p. 421 (Materials Research Society, 1986: Warrendale, PA)
  • [16] N. R. Smart, P. A. H. Cbnnell, R. Peat, O. Spahiu and L. Werme, "E1ectrochemical Measurements during the Anaerobic Corrosion of Steel," in Scientific Basis for Nuclear Waste Management XXIV, Vol. 663, p. 477 and p. 487 (Materials Research Society, 2001: Warrendale, PA)
  • [17] Y. Fukaya and M. Akashi, "Passivation Behavior of Mild Steel Used for Nuclear Waste Disposal Package," in Scientific Basis for Nuclear Waste Management XXII, Vol. 556, p. 871 (Materials Research Society, 1999: Warrendale, PA)
  • [18] E. Smailos, "Influence of Welding and Heat Treatment on Corrosion of the Candidate Highlevel Waste Container Material Carbon Steel in Disposal Relevant Salt Brines," Corrosionl2000, paper 00194 (NACE International, 2000: Houston, TX)
  • [19] A. Terlain, C. Desgranges, D. Oauvain, D. Peron, A. Oaltayries and P. Marcus, " Materials for Nuclear Waste Containers Under Long Term Disposal," Corrosion 2001, paper 01119 (NACE International, 200 l: Houston, TX)
  • [20] M. Helie, "A Reviev of 25 Yeast of Corrosion Studies on HLW Container Materials at the CEA," in Scientific Basis for Nuclear Waste Management XXX, Vol. 985, paper NN8.5 (Materials Research Society, 2006: Warrendale, PA)
  • [21] L. Werme, "Fabrication and Testing of Copper Canister for Long Term Isolation of Spent Nuclear Fuel in Scientific Basis for Nuclear Waste Management XXIII, Vol. 608, p. 77 (Materials Research Society, 2000: Warrendale, PA)
  • [22] F. Worgan, M. Apted, "Performance Analysis of Copper Canister Corrosion and Reducing Conditions," in Scientific Basis for Nuclear Waste Management XVIII, Vol. 353, p. 695 (Materials Research Society, 1995: Warrendale, PA)
  • [23] H. Imai, T. D.Fukuda and M. Akashi, "Effects of Anionic Species on the Polarization Behavior of Copper for Waste Package Material in Artificial Water," in Scientific Basis for Nuclear Waste Management XIX, Vol. 412, pp. 589[];96 (Materials Research Society, 1996: Warrendale, PA)
  • [24] F. King, D. M. LeNeveau and D. J. Jobe, "Modelling the Effects of Evolving Redox Conditions on the Corrosion of Copper Containers," in Scientific Basis for Nuclear Waste Management XVII, Vol. 333, p. 901 (Materials Research Society, 1994: Warrendale, PA)
  • [25] F. King, M. J. Quinn, C. D. Litke and D. M. LeNeveu, Corr. Sci, 37, 833 (1995)
  • [26] F. King and M. Kolář, "A Numerical Model for the Corrosion of Copper Nuclear Fuel Waste Containers," in Scientific Basis for Nuclear Waste Management XIX, Vol. 412, pp. 555-562 (Materials Research Society, 1996: Warrendale, PA)
  • [27] A. Honda, N. Taniguchi, H. Ishikawa and M. Kawasaki, "A Modeling Study of General Corrosion of Copper Overpack for Geological Isolation of High-Level Radioactive Waste," in Scientific Basis for Nuclear Waste Management XXII, Vol. 556, p. 911 (Materials Research Society, 1999: Warrendale, PA)
  • [28] F. King, C. D. Litke and B. M. Ikeda, "The Stress Corrosion Cracking of Copper Nuclear Waste Containers," in Scientific Basis for Nuclear Waste Management XXII, Vol. 556, p. 887 (Materials Research Society, 1999: Warrendale, PA)
  • [29] F. King, C. D. Litke and B. M. Ikeda, "The Stress Corrosion Cracking of Copper Containers for the Disposal of High-Level Nuclear Waste," Corrosion/99, paper 99482 (NACE International, 1999: Houston, TX)
  • [30] K. Petterson and M. Oskarsson, "Stress Corrosion Crack Growth in Copper for Waste Canister Applications," in Scientific Basis for Nuclear Waste Management XXIII, Vol. 608, p. 95 (Materials Research Society, 2000: Warrendale, PA)
  • [31] F. Druyts and B. Kursten, "Influence of Chloride Ions on the Pitting Corrosion of Candidate HLW Overpack Materials in Synthetic Oxidized Boom Clay Water," Corrosion/99, paper 99472 (NACE International, 1999: Houston, TX)
  • [32] D. W. Shoesmith and B. M. Ikeda, "Developrnent of Modeling Criteria for Prediction Lifetimes of Titanium Nuclear Waste Containers," in Scientific Basis for Nuclear Waste Management XVII, Vol. 333, p. 893 (Materials Research Society, 1994: Warrendale, PA)
  • [33] M. Akashi, G. Nakayama and T. Fukuda, "Initiation Criteria for Crevice Corrosion of Titanium Alloys Used for HLW Disposal Overpack," Corrosion/98, paper 98158 (NACE International, 1999: Houston, TX)
  • [34] G. Nakayama, K. Murakami and M. Akashi, "Assessment of Crevice Corrosion and Hydrogen Induced Stress Corrosion Cracks of Ti-Pd Alloys for HL W Overpack in Deep Underground Water Environments," in Scientific Basis for Nuclear Waste Management XXVI, Vol. 757, P 771-778 (Materials Research Society, 2003: Warrendale, PA)
  • [35] N. Nakamura, M. Akashi, Y. Fukaya, G. Nakayama and H. Ueda, "Stress-Corrosion Crack Initiation Behavior in a-Titanium Used for Nuclear Waste Disposal Overpack," Corrosion/2000, paper 00195 (NACE International, 2000: Houston, TX)
  • [36] R. B. Rebak and J. C. Estill, "Review of Corrosion Modes for Alloy 22 Regarding Lifetime Expectancy of Nuclear Waste Containers, in Scientific Basis for Nuclear Waste Management XXVI, Vol. 757, P 713-721 (Materials Research Society, 2003: Warrendale, PA)
  • [37] J. H. Lee and H. A. Elayat, "A Probabilistic Assessment Model for General Corrosion of Alloy 22 for High Level Nuclear Waste Disposal Container," Corrosion/2004, paper 04699 (NACE International, 2004: Houston, TX)
  • [38] R. B. Rebak and J. H. Payer, "Passive Corrosion Behavior of Alloy 22", 11th International High Level Radioactive Waste Management conference proceedings, April 30 - May 4, 2006, Las Vegas, NV, p. 493 (American Nuclear Society, 2006: La Grange Park, IL)
  • [39] Y-J. Kim, P. L. Andresen, P. J. Martiniano, J. Chera, M. Larsen and G. M. Gordon, "Passivity of Nuclear Waste Canister Candidate Materials in Mixed-Salt Environments," Corrosion/2002, Paper 02544, (NACE International, 2002: Houston, TX)
  • [40] O. Pensado, D. S. Dunn and G. A. Cragnolino, "Long-Term Extrapolation of Passive Behavior of Alloy 22," in Scientific Basis for Nuclear Waste Management XXVI, Vol. 757, P 723-728 (Materials Research Society, 2003: Warrendale, PA)
  • [41] J. H. Lee, T. Summers and R. B. Rebak, "A Performance Assessment Model for Localized Corrosion Susceptibility of Alloy 22 in Chloride Containing Brines for High Level Nuclear Waste Disposal Container," Corrosion/2004, paper 04692 (NACE International, 2004: Houston, TX)
  • [42] B. A. Kehler, G. O.Ilevbare and J. R. Scully, Corrosion, 57, 1042 (2001)
  • [43] K. J. Evans, A. Yilmaz, S. Daniel Day, L. L. Wong, J. C. Estill and R. B. Rebak, "Using Electrochemical Methods to Determine Alloy 22's Crevice Corrosion Repassivation Potential," Journal of Metals, Vol. 57, pp. 56-61 (2005)
  • [44] R. B. Rebak, "Factors Affecting the Crevice Corrosion Susceptibility of Alloy 22", Corrosion/2005, paper 05610 (NACE International, 2005: Houston, TX)
  • [45] D.S. Dunn, Y.-M. Pan, KT. Chiang, L. Yang, G.A. Cragnolino and X. He, "The Localized Corrosion Resistance and Mechanical Properties of Alloy 22 Waste Package Outer Containers," Journal of Metals, Vol. 57, pp. 49-55 (2005)
  • [46] G. O. Ilevbare, K 1. King, S. R. Gordon, H. A. Elayat, G. E. Gdowski and T. S. E. Gdowski, "Effect of Nitrate on the Repassivation Potential of Alloy 22 in Chloride-Containing Environments", J. of the Electrochemical Society, 152, B547-B554 (2005)
  • [47] R. B. Rebak, "Mechanisms of Inhibition of Crevice Corrosion in Alloy 22," in Scientific Basis for Nuclear Waste Management XXX, Vol. 985, paper NN8.4 (Materials Research Society, 2006: Warrendale, PA)
  • [48] D. V. Fix, J. C. Estill, G. A. Hust, L. L. Wong and R. B. Rebak, "Environmentally Assisted Cracking Behavior of Nickel Alloys in Simulated Acidic and Alkaline Waters Using U-bend Specimens," Corrosion/2004, Paper 04549 (NACE International, 2004: Houston, TX).
  • [49] K J. King, L. L. Wong, J. C. Estill and R. B. Rebak, "Slow Strain Rate Testing of Alloy 22 in Simulated Concentrated Ground Waters," Corrosion/2004, Paper 04548, (NACE International, 2004: Houston, TX)
  • [50] K. T. Chiang, D. S. Dunn and G. A. Cragnolino, "The Combined Effect of Bicarbonate and Chloride Ions on the Stress Corrosion Cracking Susceptibility of Alloy 22," Corrosion/2006, Paper 06506, (NACE International, 2006: Houston, TX)
  • [51] R. W. Schutz, "Platinum Group Metal Additions to Titanium: A Highly Effective Strategy for Enhancing Corrosion Resistance," Corrosion, 59, 1043 (2003)
  • [52] F. Hua, K Mon, P. Pasupathi, G. M. Gordon and D. W. Shoesmith, "Corrosion of Ti Grade 7 and Other Ti Alloys in Nuclear Waste Repository Environments - A Review," Corrosion/2004, Paper 04698 (NACE International, 2004: Houston, TX)
  • [53] C. S. Brossia and G. A. Cragnolino, "Effects or Environmental and Metallurgical Conditions on the Passive and Localized Dissolution of Ti-0.15%Pd," Corrosion, 57, 768 (2001)
  • [54] L. L. Wong, J. C. Estill, D. V. Fix and R. B. Rebak, "Corrosion Characteristics or Titanium Alloys in Multi-Ionic Environments," PVP-Vol. 467, 63 (ASME, 2003: New York, NY)
  • [55] C. L. Briant, Z. F. Wang and N. Chollocoop, Corrosion Science, 44, 1875 (2002)
  • [56] L. M. Young, G. M. Catlin, G. M. Gordon and P. L. Andresen, "Constant Load SCC Initiation Response or Alloy 22 (UNS N06022), Titanium Grade 7 and Stainless Steels at 105°C," Corrosion/2003, Paper 03685 (NACE International, 2003: Houston, TX)
  • [57] D. V. Fix, J. C Estill, L. L. Wong and R. B. Rebak, "Susceptibility or Welded and Non-Welded Titanium Alloys to Environmentally Assisted Cracking in Simulated Concentrated Ground Waters," Corrosion/2004, Paper 0455 I (NACE International, 2004: Houston, TX)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0027-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.