PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Failure analysis and predictive maintenance of aircraft components

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Implementation of routine condition monitoring techniques, failure analysis protocols and complementary specific research and development (R&D) activities is valuable in preventing failure recurrence. Ferrography is a common technique for condition monitoring, in which small (wear) particles are isolated on a glass slide based upon the interaction between an external magnetic field and the magnetic moments of the particles suspended in a flow stream. Here, the application of ferrography in monitoring the health of aircraft assemblies is reviewed. In addition, several definitions of important terms related to failure analysis are provided, and a recommended failure analysis protocol is discussed. Finally, several case studies of aircraft components that failed due to corrosion-involving mechanisms are summarized, and an example of the application of R&D projects for improved quality assurance and prevention of failure occurrence is given.
Rocznik
Strony
13--25
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
  • Tel-Aviv University, The Iby and Aladar Fleischman Faculty of Engineering, School of Mechanical Engineering, Tel-Aviv 69978, Israel
Bibliografia
  • [1] MIL-STD-721C, Definitions of terms for reliability and maintainability.
  • [2] http://en.wikipedia.org.
  • [3] MIL-STD-2155 (AS), Failure reporting, analysis and corrective action system.
  • [4] Eliaz N. and Latanision R.M.: Preventative maintenance and failure analysis of aircraft components. Corr. Rev., accepted.
  • [5] Ifergane S., Eliaz N., Stern N., Kogan E., Shemesh G., Sheinkopf H. and Eliezer D.: The effect of manufacturing processes on the fatigue lifetime of aeronautical bolts. Eng. Fail. Anal. 8 (2001), pp. 227-235.
  • [6] Eliaz N., Shemesh G. and Latanision R.M.: Hot corrosion in gag turbine components. Eng. Fail. Anal. 9 (2002), pp. 31-43.
  • [7] Eliaz N., Shachar A., Tal B. and Eliezer D.: Characteristics of hydrogen embrittlement stress corrosion cracking and tempered martensite embrittlement in high-strength steels. Eng. Fail. Anal. 9 (2002), pp. 167-184.
  • [8] Eliaz N., Gheorghiu G., Sheinkopf H., Levi O., Shemesh G., Ben-Mordechai A and Artzi H.: Failures of bolts in helicopter main rotor drive plate assembly due to improper application of lubricant. Eng. Fail. Anal. 10 (2003), pp. 443-451.
  • [9] Eliaz N., Sheinkopf H., Shemesh G. and Artzi H.: Cracking in cargo aircraft main landing gear truck beams due to abusive grinding following chromium plating. Eng. Fail. Anal. 12 (2005), pp. 337-347.
  • [10] Eliaz N., Banks-Sills L, Ashkenazi D. and Eliasi R.: Modeling failure of metallic glasses due to hydrogen embrittlement in the absence of external loads. Acta Mater. 52 (2004), pp. 93-105.
  • [11] MIL- I -6868, Inspection process, magnetic particles.
  • [12] MIL-STD-1501, Chromium plating, law embrittlement, electrodeposition.
  • [13] MIL-STD-866B, Grinding of chrome plated steel and steel parts beat treated to 180,000 psi or over.
  • [14] MIL-STD-870, Cadmium plating, law embrittlement, electrodeposition.
  • [15] Air Accidents Investigation Branch (AAIB) Bulletin, UK Department of Transport (DfT), Apri12000.
  • [16] Van Vaeck L, Adriaens A. and Gijbels R.: Static secondary ion mass spectrometry (S-SIMS) part 1: methodology and structural interpretation. Mass Spectrom Rev 18 (1999), pp. 1-47.
  • [17] Shvachko V.I.: Col d cracking of structural steel weldments as reversible hydrogen embrittlement effect. Intern. J. Hydr. Energy, 25 (2000), pp. 473-480.
  • [18] Takai K., Seki J., Homma Y.: Observation of trapping sites of hydrogen and deuterium in high-strength steels by using secondary ion mass spectrometry. Mater. Trans. HM 36 (1995), pp. 1134-1139.
  • [19] Brass A.M., Chene J. and Boutry-Forveille A: Measurements of deuterium and tritium concentration enhancement at the crack lip of high strength steels. Corr. Sci. 38 (1996), pp. 569-585.
  • [20] Chene J., Lecoester F., Brass AM. and Noel D.: SIMS analysis of deuterium diffusion in alloy 600: the correlation between fracture mo de and deuterium concentration profile. Corr. Sci. 40 (1998), pp. 49-60.
  • [21] Sastri V.S., McDonnell D.B.: Analysis of surface hydrogen in high-strength steels. Canad. Metall. Quart. 34 (1995), pp. 37-41.
  • [22] Lockwood F.E. and Dalley R.: Lubricant analysis. ASM Handbook, Vol. 18: Friction, Lubrication and Wear Technology, ASM International, Materials Park, OH, 1992, pp. 299-312.
  • [23] Staff report: Ferrography: a tool for wear-particle analysis. Hydraul. Pneum. November (1986), pp. 59-61.
  • [24] Seifert W.W. and Westcott V.C.: Method for the study of wear particles in lubricating oil. Wear 21 (1972), pp. 27-42.
  • [25] Westcott V.C.: Method and apparatus for segregating particulate matter. U.S. Patent No. 4,047,814, September 13, 1977.
  • [26] Reda A.A, Bowen R. and Westcott V.C.: Characteristic of particles generated at the interface between sliding steel surfaces. Wear 34 (1975), pp. 261-273.
  • [27] Scott D., Seifert W.W. and Westcott V.C.: The particles of wear. Sci. Amer. 230 (1974), pp. 88-97.
  • [28] Bowen E.R. and Westcott V.C.: Wear Particle Atlas (Revised), Vol. 1, Naval Air Engineering Center Contract number N00156-74-C01 682, July 1976.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0027-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.