PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Discrete-continuum transition at interfaces of nanocomposites

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A number of micromechanical investigations have been performed to predict behaviour of composite interfaces, showing that the detailed behaviour of the material at these interfaces frequently dominates the behaviour of the composite as a whole. The interfacial interaction is an extremely complex process due to continuous evolution of interfacial zones during deformation and this is particularly true for carbon nanotubes since the interfacial interaction is confined to the discrete molecular level. The atomic strain concept based upon Voronoi tessellation allows analyzing the molecular structure atom by atom, which may give a unique insight into deformation phenomena operative at molecular level such as interface behaviour in nanocomposites.
Słowa kluczowe
Rocznik
Strony
251--260
Opis fizyczny
Bibliogr. 46 poz., rys.
Twórcy
autor
autor
  • Department of Mechanical Engineering, Aalborg University, 101Pontoppidanstrade St., 9220 Aalborg East, Denmark, rp@ime.aau.dk
Bibliografia
  • [1] P.C. LeBaron, Z. Wang, and T.J. Pinnavaia, "Polymerlayered silicate nanocomposites: an overview", Applied Clay Science 15, 11-29 (1999).
  • [2] M. Alexandre and P. Dubois, "Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials", Materials Science and Engineering R 28, 1-63 (2000).
  • [3] D. Schmidt, D. Shah, and KP. Giannelis, "New advances in polymer/layered silicate nanocomposites", Current Opinion in Solid Stale and Materials Science 6, 205-212 (2002).
  • [4] D. Srivastava, C. Wei, and K. Cha, "Nanomechanics of carbon nanotubes and composites", Applied Mechanics Review 56(2), 215-230 (2003).
  • [5] H. Rafii- Tabar, "Computational modelling of thermomachanical and transport properties of carbon nanotubes", Physical Reports 390, 235-452 (2004).
  • [6] R. Andrews and M.C. Weisenberger, "Carbon nanotube polymer composites", Current Opinion in Solid Stale and Materials Science 8, 31-37 (2004).
  • [7] K.T. Thostenson, C. Li, and T-W. Chou, "Nanocomposites in context", Composite Science and Technnology 65, 491-516 (2005).
  • [8] L.S. Schadler, S.C. Giannaris, and P.M. Ajayan, "Load transfer in carbon nanotube epoxy composites", Applied Physics Letters 73(26), 3842-3844 (1998).
  • [9] O. Lourie and H.D. Wagner, "Evidence of stress transfer and formation of fracture cluster in carbon nanotube-based composites", Composite Science and Technology 59, 975-977 (1999).
  • [10] J. Gou, B. Minaie, B. Wang, Z. Liang, and C. Zhang, "Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites", Computational Materials Science 31, 225-236 (2004).
  • [11] H.D. Wagner, O. Lourie, Y. Feldman, and R. Tenne, "Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix", Applied Physics Letters 72(2), 188-190 (1998).
  • [12] A.S. Nielsen and R. Pyrz, "Study of the influence of thermal history on the load transfer efficiency and fibre failure in carbon/polypropylene microcomposites using Raman spectroscopy", Composite Interfaces 6(5), 467-482 (1999).
  • [13] K.K. Gamstedt, M. Skrifvars, T.K. Jacobsen, and R. Pyrz, "Synthesis of unsaturated polyesters for improved interfacial strength an car bon fibre composites", Composites: Part A 33, 1239-1252 (2002).
  • [14] K.W. Wong, P.K Sheehan, and C.M. Lieber, "Nanobeam mechanics: elasticity, strength and toughness of nanorods and nanotubes", Science 277, 1971-1975 (1997).
  • [15] J.P. Wittmer, A. Tanguy, J.-L. Barrat and L. Lewis, "Vibrations of amorphous, nanometric structures: When do es continuum theory apply?", Europhysics Letters 57(3), 423-429 (2002).
  • [16] A. Tanguy, J.P. Wittmer, F. Leonforte, and J.-L. Barrat, "Continuum limit of amorphous elastic bodies: A finite size study of low-frequency harmonic vibrations", Physical Review B 66,174205 (2002).
  • [17] F. Leonforte, A. Tanguy, J.P. Wittmer, and J.-L. Barrat, "Continuum limit of amorphous elastic bodies II: Linear response to a point source force", Physical Review B 70, 014203 (2004).
  • [18] A. Berezhnyy and L. Berlyand, "Continuum limit for three-dimensional mass-spring networks and discrete Korn's inequality", J. Mechanics and Physics of Solids 54, 635-669 (2006).
  • [19] C. Maloney and A. Lemaitre, "Universal breakdown of elasticity at the onset of material failure", Physical Review Letters 93(19), 195501 (2004).
  • [20] H. Liang and M. Upmanyu, "Size-dependent elasticity of nanowires: Nonlinear effects", Physical Review B 71, 241403 (2005).
  • [21] X. Zhang and P. Sharma, "Size dependency of strain in arbitrary shaped anisotropic embedded quantum dots due to nonlocal dispersive effects", Physical Review B 72, 195345 (2005).
  • [22] R. Sunyk, and P. Steinmann,"On higher gradients in continuum-atomistic modelling", Int. J. Solids and Structures 40, 6877-6896 (2003).
  • [23] Y. Chen, J.D. Lee, and A. Eskandarian, "Atomistic viewpoint of the applicability of microcontinuum theories", Int. J. Solids and Structures 41, 2085-2097 (2004).
  • [24] M. Arndt and M. Griebel, "Derivation of higher order gradient continuum models from atomistic models for crystalline solids", Multiscale Modelling and Simulations 4(2), 531-562 (2005).
  • [25] R.J. Hardy, "Formulas for determining local properties in molecular dynamics simulations. Shock waves", J. Chemical Physics 76(1), 622-628 (1982).
  • [26] Z.H. Sun, X.X. Wang, A.K. Soh, and H.A. Wu, "On stress calculations in atomistic simulations", Modelling and Simulations in Materials Science and Engineering 14, 423-431 (2006).
  • [27] J.F. Lutsko, "Stress and elastic constants in anisotropic solids: Molecular dynamics technique", J. Applied Physics 64,1152-1154 (1988).
  • [28] J. Cormier, J.M. Riekman, and T.J. Delph, "Stress calculation in atomistic simulations of perfect and imperfect solids", J. Applied Physics 89(1), 99-104 (2001).
  • [29] T.J. Delph, "Conservation laws for multibody interatomic potentials", Modelling and Simulations in Materials Science and Engineering 13, 585-594 (2005).
  • [30] P.H. Mott, A.S. Argon and U.W. Suter, "The atomic strain tensor", J. Computational Physics 101, 140-150 (1992).
  • [31] J. Li and F. Shimizu, "Least-square atomic strain", Report, http://164.107.79.177/Archive/Graphics/A/ annotate_atomic_strain/Doc/main.pdf
  • [32] K.S. Cheung and S. Yip, "Atomic-level stress in an inhomogeneous system", J. Applied Physics 70(10), 5688-5690 ((1991).
  • [33] M. Zhou, "A new look at the atomic level virial stress: on continuum-molecular system equivalence", Proc. Royal Society of London A, 459, 2347-2392 (2003).
  • [34] J.A. Zimmerman, E.B. Webb III, J.J. Hoyt, R.E. Jones, P.A. Klein, and D.J. Bammann, "Calculation of stress in atomistic simulation", Modelling and Simulations in Materials Science and Engineering 12, 319-332 (2004).
  • [35] R. Pyrz, "The application of morphological methods to composite materials" in: Comprehensive Composite Materials, Vol. 2, pp. 553-576, ed. A. Kelly and C. Zweben, Elsevier, Oxford, 2000.
  • [36] B. Bochenek and R Pyrz, "Reconstruction of random microstructures - a stochastic optimization problem", Computational Materials Science 31, 93-112 (2004).
  • [37] Z.H. Stachurski and W. Brostow, "Methamorphosis of Voronoi polyhedra as a definite measure of the elastic-to-dissipative atomic displacement transition", Polymery 46, 302-306 (2001).
  • [38] G. Friesecke and F. Theil, "Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass spring lattice", J. Nonlinear Science 12, 445-478 (2002).
  • [39] T.E. Chang, L.R Jensen, A. Kisliuk, R.B. Pipes, R. Pyrz, and A.P. Sokolov, "Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposites", Polymer 46, 439-444 (2005).
  • [40] A.M. Rao, E. Richter, S. Bandow, B. Chase, P.C. Eklund, KA. Williams, S. Fang, KR Subbaswamy, M. Menon, A. Thess, RE. Smalley, G. Dresselhaus, and M.S. Dresselhaus, "Diameter-selective Raman scattering from vibrational modes in carbon nanotubes", Science 275,187-191 (1997).
  • [41] R. Saito, T. Takeya, T. Kimura, G. Dresselhause, and M.S. Dresselhause, "Finite-size effect on the Raman spectra of carbon nanotubes", Physical Review B 59, 2388-2392 (1999).
  • [42] O. Lourie and H.D. Wagner, "Evaluation of Young's modulus of carbon nanotubes by micro-Raman spectroscopy", J. Materials Research 13, 2418-2422 (1998).
  • [43] P.M. Ajayan , L.S. Schadler, C. Giannaris, and A. Rubio, "Single-walled carbon nanotube-polymer composites: strength and weakness", Advanced Materials 12, 750-753 (2000).
  • [44] D.A. Head, A.J. Levine, and F.C. MacKintosh, "Deformation of cross-linked semiflexible polymer networks", Physical Review Letters 91(10), 108102 (2003).
  • [45] S.L. Mayo, B.D. Olafson, and W.A. Goddard III, "DREIDING: A generic force field for molecular simulations", J. Physical Chemistry 94, 8897-8909 (1990).
  • [46] http://www.accelrys.com/mstudio/ms modeling/ discover.html
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0025-0043
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.