PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parallel adaptive computation of same time-dependent materials- related microstructural problems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Some materials-related microstructural problems calculated using the phase-field method are presented. It is well known that the phase field method requires mesh resolution of a diffuse interface. This makes the use of mesh adaptivity essential especially for fast evolving interfaces and other transient problems. Complex problems in 3D are also computationally challenging so that parallel computations are considered necessary. In this paper, a parallel adaptive finite element scheme is proposed. The scheme keeps the level of node and edge for 2D and level of node and face for 3D instead of the complete history of refinements to facilitate derefinement. The information is local and exchange of information is minimized and also less memory is used. The parallel adaptive algorithms that run on distributed memory machines are implemented in the numerical simulation of dendritic growth and capillary-driven flows.
Rocznik
Strony
229--237
Opis fizyczny
Bibliogr. 45 poz., rys.
Twórcy
autor
autor
  • Linne Flow Centre, Department of Mechanics, Royal Institute of Technology, SE-l00 44 Stockholm, Sweden, minh@mech.kth.se
Bibliografia
  • [1] J.D. Van der Waals. "The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density", J. Statical Physics 20, 197-244 (1979).
  • [2] D.J. Korteweg. "Sur la forme que prennent", Arch. Neerl. Sci. Extactes Nat. Ser. II 6, 1-24 (1901).
  • [3] J.W. Cahn and J.E. Hilliard. "Free energy of a nonuniform system. Interface free energy", J. Chemical Physics 58, 258 (1958).
  • [4] A.A. Wheeler, B.T. Murray, and RJ. Schaefer, "Computation of dendrites using a phase field model", Physica D 66(1-2), 243-262 (1993).
  • [5] G.B. McFadden, A.A. Wheeler, RJ. Braun, and S.R. Coriell, "Phase-field models for anisotropic interfaces", Phys. Rev. E 48(3), 2016-2024 (1993).
  • [6] B.T. Murray, A.A. Wheeler, and M.E. Glicksman, Simulations of experimentally observed dendritic growth behavior using a phase-field model, J. Crystal Growth 154 (3-4), 386-400 (1995).
  • [7] A. Karma and W.J. Rappel, "Quantitative phase--field modelling of dendritic growth in two and three dimensions", Phys. Rev. E 57, 4323-4349 (1998).
  • [8] T.Y. Hou, Z. Li, S. Osher, and P. Zhao, "A hybrid method for moving interface problems wit h application to the hele-shaw flow", J. Comp. Phys. 134(2), 236-247 (1997).
  • [9] L-T. Kim, N. Provatas, N. Galdenfeld, and J. Dantzig, "Computation of dendritic microstructure using a levelset method", Phys. Rev. E 62(2), 2471-2474 (2000).
  • [10] D. Juric and G. Tryggvason, "A front-tracking method for dendritic solidification", J. Comp. Phys. 123, 127-148 (1996).
  • [11] P. Zhao and J.C. Heinrich, "Front-tracking ? nite element method for dendritic solidification", J. Comp. Phys. 173, 765-796 (2001).
  • [12] R. Tonhardt and G. Amberg, "Phase-field simulation of dendritic growh in a shear flaw", J. Crystal Growth 194, 406 (1998).
  • [13] C. Beckermann, H.J. Diepers, L Steinbach, A. Karma, and X. Tong, "Modeling melt convection in phase-field simulations of solidification", J. Comp. Phys. 154, 468 (1999).
  • [14] N. Al-Rawahi and G. Tryggvason, "Numerical simulation of dendritic solidification with convection: Two-dimensional geometry", J. Comp. Phys. 180(2), 471-496 (2002).
  • [15] S. Osher and J.A. Sethian, "Frants propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations", J. Comp. Phys. 79, 12-49 (1998).
  • [16] H. Zhang, L.L. Zheng, V. Prasad, and T.Y. Hou, "A curvilinear level set formulation for highly deformable free surface problems with application to solidification", Numer. Heat Tr. B 43, 1-20 (1998).
  • [17] F. Gibou, R Fedkiw, R Caflisch, and S. Osher, "A level set approach for the numerical simulation of dendritie growth", J. Sci. Compt. 19, 183-199 (2002).
  • [18] R. German, Liquid Phase Sintering, Plenum Press, N.Y., 1985.
  • [19] P.G. de Gennes, F. Brochard-Wyart, and D. Quere, Capillarity and Wetting Phenomena, Springer-Verlag, N.Y., 2004.
  • [20] Y. Jaluria and K.E. Torrance, Computational Heat Transfer, Taylor & Francis, 2003.
  • [21] A. Laszloffy, J. Long, and A. Patra, "Simple data management, scheduling and solution strategies for managing the irregularities in parallel adaptive hp finite element simulations", Parallel Computing 26,1765-1788 (2000).
  • [22] M.C. Rivara, "Selective re’finement/derefinement algorithms for sequences of nested triangulations", Int. J. Numer. Meth. Eng. 28, 2889-2906 (1989).
  • [23] G. Karypis and V. Kumar, "A fast and high quality multilevel scheme for partitioning irregular graphs", SIAM J. Sci. Comput. 20(1), 359-392 (1998).
  • [24] J.E. Flaherty, RM. Loy, C. Özturan, M.S. Shepard, B.K Szymanski, J.D. Teresco, and L.H. Ziantz, "Parallel structures and dynamic load balancing for adaptive finite element computation", Appl. Numer. Math. 26, 241-163 (1998).
  • [25] R. Diekmann, R Preis, F. Schlimbach, and C.Walshaw, "Shape-optimized mesh partitioning and 1000 balancing for parallel adaptive fem", Parallel Computing 26, 1555-1581 (2000).
  • [26] C. Walshawand M. Cross, "Mesh partitioning: a multilevel balancing and refinement algorithm", SIAM J. Sci. Comput. 22, 63-80 (2000).
  • [27] J.G. Castanos, Parallel Adaptive Unstructured Computation. PhD thesis, Department of Computer Science, Brown University, Providence, 2000.
  • [28] N. Touheed, P. Selwood, P.K Jimack, and M. Berzins, "A comparison of same dynamic load-balancing algorithms for a parallel adaptive flow solver", Parallel Computing 26, 1535-1554 (2000).
  • [29] L. Oliker, R. Biswas, and H.N. Gabow, "Parallel tetrahedral mesh adaptation with dynamic load balancing", Parallel Computing 26, 1583-1608 (2000).
  • [30] A. Bose and G.F. Carey, "A class of data structures and object-oriented implementation for finite element methods on distributed memory systems", Comput. Methods Appl. Mech. Eng. 171, 109-121 (1999).
  • [31] A. Stagg, J. Hallberg, and J. Schmidt, "A parallel, adaptive refinement scheme for tetrahedral and triangular grids", Lecture Notes in Computer Science, 512-518 (2000).
  • [32] J. Jeong, N. Goldenfeld, and A. Dantzig, "Phase field model for three dimensional dendritic growth with fluid flow", Physical Review E 64, 041602:1-14 (2001).
  • [33] R Niekamp and E. Stein, "An object-oriented approach for parallel two and three-dimensional adaptive finite element computations", Computers and Structures 80317-328, (2002).
  • [34] J. Waltz, "Parallel adaptive refinement for unsteady flow calculations on 3d unstructured grids", Int. J. Numer. Meth. Fluids 46, 37-57 (2004).
  • [35] G. Amberg, R Tonhardt, and C. Winkler, "Finite element simulations using symbolic computing", Math. and Comp. in Sim. 49, 257-274 (1999).
  • [36] G. Karypis, K Schloegel, and V. Kumar, ParMetis 3.1: Parallel Graph Partitioning and Sparse Matrix Ordering Library, University of Minnesota, Minneapolis, 2003.
  • [37] http://www.cs.sandia.gov/crf/aztec1.html
  • [38] http: / /www . sgi . com/tech/ stl
  • [39] Message Passing Interface Forum, MPI: A Message Passing Interface Standard, 1994.
  • [40] G. Amberg, "Semisharp phase field method for quantitative phase change simulations", Phys. Rev. Lett. 91(26), 265505-265511 (2003).
  • [41] W. Villanueva and G. Amberg, "Some generic capillary driven flows", Int. J. Multiphase Flow 32, 1072-1086 (2006).
  • [42] D. Jacqmin, "Contact-line dynamics of a diffuse fluid interface", J. Fluid Mech. 402, 57-88 (2000).
  • [43] W. Villanueva, J. Sjodahl, M. Stjernström, J. Roeraade, and G. Amberg, "Microdroplet deposition under a liquid medium", Langmuir 23,1171-1177 (2007).
  • [44] F.V. Motta, RM. Balestra, S. Ribeiro, and S.P. Taguchi, “Wetting behaviour of sic ceramics, part I”, Materials Letters 58, 2805-2809 (2004).
  • [45] S.P. Taguchi, F.V. Motta, RM. Balestra, and S. Ribeiro, “Wetting behaviour of sic ceramics, part II", Materials Letters 58, 2810-2814 (2004).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0025-0040
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.