PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

X-ray microdiffraction on flow-controlled biomolecular assemblies

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study of liquid crystalline assemblies, with an emphasis on biological phenomena, is now accessible using newly developed microdevices integrated with X-ray analysis capability. Many biological systems can be described in terms of gradients, mixing, and confinement, all of which can be mimicked with the use of appropriate microfluidic designs. The use of hydro-dynamic focusing creates well-defined mixing conditions that vary depending on parameters such as device geometry, and can be quantified with finite element modelling. We describe experiments in which geometry and strain rate induce finite changes in liquid crystalline orientation. We also demonstrate the online supramolecular assembly of lipoplexes. The measurement of lipoplex orientation as a function of flow velocity allows us to record a relaxation process of the lipoplexes, as evidenced by a remarkable 4-fold azimuthal symmetry. All of these processes ale accessible due to the intentional integration of design elements in the microdevices.
Rocznik
Strony
217--227
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
autor
autor
autor
  • Max Planck Institute for Dynamics and Self-Organization, Bunsenstr 10, D-37073 Gottingen, Germany, thomas.pfohl@ds.mpg.de
Bibliografia
  • [1] G.M. Whitesides, "The 'right' size in nanobiotechnology", Nature Biotechnology 21 (10), 1161-1165 (2003).
  • [2] J. Su, M.R Bringer, RF. Ismagilov, and M. Mrksich, "Combining microfluidic networks and peptide arrays for multi-enzyme assays", J. American Chemical Society 127 (20), 7280-7281 (2005).
  • [3] E.P. Kartalov, W.F. Anderson, and A. 8cherer, "The analytical approach to polydimethylsiloxane microfluidic technology and its biological applications", J. Nanoscience and Nanotechnology 6 (8), 2265-2277 (2006).
  • [4] Y. Kikutani, M. Ueno, H. Hisamoto, M. Tokeshi, and T. Kitamori, "Continuous-flow chemical processing in three-dimensional microchannel network for on-chip integration of multiple reactions in a combinatorial mode", QSAR and Combinatorial Science 24 (6), 742-757 (2005).
  • [5] J.C. McDonald and G.M. Whitesides, "Poly( dimethylsiloxane) as a material for fabricating microfluidic devices", Accounts of Chemical Research 35 (7), 491-499 (2002).
  • [6] T. Pfohl, F. Mugele, R Seemann, and S. Herminghaus, "Trends in microfluidics with complex fluids", Chem. Phys. Ghem.4 (12),1291-1298 (2003).
  • [7] K. Ahn, J. Agresti, H. Chong, M. Marquez, and D.A. Weitz, "Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels", Applied Physics Letters 88 (26) (2006).
  • [8] D.J. Beebe, G.A. Mensing, and G.M. Walker, "Physics and applications of microfluidics in biology", Annual Review of Biomedical Engineering 4, 261-286 (2002).
  • [9] C. Hansen and 8.R. Quake, "Microfluidics in structural biology: smaller, faster, better", Current Opinion in Structural Biology 13 (5), 538-544 (2003).
  • [10] S. Köster, J.B. Leach, B. 8truth, T. Pfohl, and J.Y. Wong, "Visualization of flow-aligned type I collagen self-assembly in tunable pH gradients", Langmuir 23, 357-359 (2007).
  • [11] S. Köster, D. Steinhauser, and T. Pfohl, "Brownian motion of actin filaments in confining microchannels", J. Phys.: Condens. Matter 17, 84091-S41O4 (2005).
  • [12] L. Pollack, M.W. Tate, A.C. Finnefrock, C. Kalidas, S. Trotter, N.C. Darnton, L. Lurio, RH. Austin, C.A. Batt, 8.M. Gruner, and S.G.J. Mochrie, "Time resolved collapse of a folding protein observed wit h small angle x-ray scattering", Physical Review Letters 86 (21), 4962-4965 (2001).
  • [13] L. Pollack, M.W. Tate, N.C. Darnton, J.B. Knight, S.M. Gruner, W.A. Eaton, and R.H. Austin, "Compactness of the denatured state of a fast-folding protein measured by submillisecond small-angle x-ray scattering", Proc. National Academy of Sciences USA 96 (18), 10115-10117 (1999).
  • [14] R. Dootz, A. Otten, S. Köster, B. Struth, and T. Pfohl, "Evolution of DNA compaction in microchannels", J. Phys.: Condens. Matter 18 (18), 8639-8652 (2006).
  • [15] A. Otten, S. Köster, B. Struth, A. Snigirev, and T. Pfohl, "Microfluidics of soft matter investigated by small-angle X-Ray scattering", J. Synchrotron Radiation 12, 745-750 (2005).
  • [16] W.R. Burghardt, E.F. Brown, M.L. Auad, and J.A. Kornfield, "Molecular orientation of a commercial thermotropic liquid crystalline polymer in simple shear and complex flow", Rheologica Acta 44 (5), 446-456 (2005).
  • [17] K.K Ewert, A. Ahmad, H.M. Evans, and C.R. Safinya, "Cationic lipid-DNA complexes for non-viral gene therapy: relating supramolecular structures to cellular pathways", Expert Opinion on Biological Therapy 5 (1), 33-53 (2005).
  • [18] R. Dootz, H.M. Evans, S. Köster, and T. Pfohl, "Rap id prototyping of X-ray microdiffraction compatible continuous microflow foils", Small 3 (1), 96-100 (2007).
  • [19] A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, "A compound refractive lens for focusing high-energy X-rays", Nature 384 (6604), 49-51 (1996).
  • [20] J.B. Knight, A. Vishwanath, J.P. Brody, and RH. Austin, "Hydrodynamic focusing on a silicon chip: Mixing nanoliters in microseconds", Physical Review Letters 80 (17), 3863-3866 (1998).
  • [21] B. Struth, A. Snigirev, O. Konovalov, A. Otten, R. Gauggel, and T. Pfohl, "Application of microfocussing at a non-specific beamline", SRI 2003 Proc. AIP Conf. Proceedings 705, 804 (2004).
  • [22] D. Davidov, C.R Safinya, M. Kaplan, S.S. Dana, R. Schaetzing, RJ. Birgeneau, and J.D. Litster, "Highresolution X-ray and light-scattering study of critical behavior associated with the nematic-smectic-A transition in 4-Cyano-4'-Octylbiphenyl", Physical Review B 19 (3), 1657-1663 (1979).
  • [23] T. Pfohl, J.H. Kim, M. Yasa, H.P. Miller, G.C.L. Wong, F. Bringezu, Z. Wen, L. Wilson, M.W. Kim, Y. Li, and C.R. Safinya, "Controlled modification of microstructured silicon surfaces for confinement of biological macromolecules and liquid crystals", Langmuir 17 (17), 5343-5351 (2001).
  • [24] M.C. Choi, T. Pfohl, Z.Y. Wen, Y.L. Li, M.W. Kim, J.N. Israelachvili, and C.R Safinya, "Ordered patterns of liquid crystal toroidal defects by microchannel confinement", Proc. National Academy of Sciences USA 101 (50),17340-17344 (2004).
  • [25] S.H.J. Idziak, C.R Safinya, RS. Hill, KE. Kraiser, M. Ruths, H.E. Warriner, S. Steinberg, KS. Liang, and J.N. Israelachvili, "T he X-ray surface forces apparatus - structure of a thin smectic liquid-crystal film under confinement", Science 264 (5167), 1915-1918 (1994).
  • [26] D. Durand, J. Doucet, and F. Livolant, "A study of the structure of highly concentrated phases of DNA by X-ray-diffraction", Journal de Physique II 2 (9), 1769-1783 (1992).
  • [27] S.E. Raper, N. Chirmule, F.S. Lee, N.A. Wivel, A. Bagg, G.P. Gao, J.M. Wilson, and M.L. Batshaw, "Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer", Molecular Genetics and Metabolism 80 (1-2), 148-158 (2003).
  • [28] P.L. Felgner and G. Rhodes, "Gene therapeutics", Nature 349, 351-352 (1991).
  • [29] A. Ahmad, H.M. Evans, K. Ewert, C.X. George, C.E. Samuel, and C.R. Safinya, "New multivalent cationic lipids reveal bell curve for transfection efficiency versus membrane charge density: lipid-DNA complexes for gene delivery", J. Gene Medicine 7 (6), 739-748 (2005).
  • [30] K.K Ewert, H.M. Evans, A. Zidovska, N.F. Bouxsein, A. Ahmad, and C.R Safinya, "A columnar phase of dendritic lipid-based cationic liposome-DNA complexes for gene delivery: Hexagonally ordered cylindrical micelles embedded in a DNA honeycomb lattice", J. American Chemical Society 128 (12), 3998-4006 (2006).
  • [31] J.O. Rädler, L Koltover, T. Salditt, and C.R. Safinya, "Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes", Science 275 (5301), 810-814 (1997).
  • [32] D.K Cinader and W.R Burghardt, "X-ray scattering studies of orientation in channel flows of a thermotropic liquid-crystalline polymer", J. Polymer Science Part B Polymer Physics 37 (24), 3411-3428 (1999).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0025-0039
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.