PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Modelling drop dynamics on patterned surfaces

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present a mesoscopic model able to capture the physics of drops moving across patterned surfaces. In this model, interfaces appear naturally, and "both chemical and topological patterning ran be incorporated wit h relative ease, making it particularly suitable to study the behaviour of evolving drops. We summarise results on drop dynamics, including drops spreading on a chemically patterned surface, using a hydrophobic grid to alleviate mottle and the transition and dynamics of drops moving across a superhydrophobic surface.
Rocznik
Strony
203--210
Opis fizyczny
Bibliogr. 49 poz., rys.
Twórcy
autor
  • The Rudolf Peierls Centre for Theoretical Physics, Oxford University, 1 Keble Road, Oxford OXl 3NP, U.K., halim@thphys.ox.ac.uk
Bibliografia
  • [1] W. Barthlott and C. Neinhuis, "Purity of the sacred lotus, or escape from contamination in biological surfaces", Planta 202 (1), 1-8 (1997).
  • [2] A.R. Parker and C. R. Lawrence, "Water capture by a desert beetle", Nature 414 (6859), 33-34 (2001).
  • [3] H. Gau, S. Herminghaus, P. Lenz, and R. Lipowsky,"Liquid morphologies on structured surfaces: From microchannels to microchips", Science 283 (5398), 46-49 (1999).
  • [4] A.A. Darhuber, S.M. Troian, S.M. Miller, and S. Wagner, "Morphology of liquid microstructures on chemically patterned surfaces", J. Appl. Phys. 87 (11), 7768-7775 (2000).
  • [5] J. Leopoldes, A. Dupuis, D. G. Bucknall, and J. M. Yeomans, "Jetting micron-scale droplets into chemically heterogeneous surfaces", Langmuir 19 (23), 9818-9822 (2003).
  • [6] D. Gner and T. J. McCarthy, "Ultrahydrophobic surfaces. Effects of topography length scales on wettability", Langmuir 16 (20), 7777-7782 (2000).
  • [7] D. Quere, "Non-sticking drops", Rep. Prog. Phys. 68 (11), 2495-2532 (2005).
  • [8] J. Bico, C. Marzolin, and D. Quere, "Pearl drops", Europhys. Lett. 47 (2), 220-226 (1999).
  • [9] B. He, N.A. Patankar, and J. Lee, "Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces", Langmuir 19 (12), 4999-5003 (2003).
  • [10] A.J. Briant, A.J. Wagner, and J.M. Yeomans, "Lattice Boltzmann simulations of contact lilie motion. I. Liquid gas systems", Phys. Rev. E 69 (3), 031602 (2004).
  • [11] J.W. Cahn, "Critical-point wetting", J. Chem. Phys. 66 (8), 3667-3672 (1977).
  • [12] C. Cottin-Bizonne, J.-L. Banat, L. Bocquet, and E. Charlaix, "Low-friction flows of liquid at nanopatterned interfaces", Nature Mat. 2 (4), 237-240 (2003).
  • [13] A.J. Briant and J.M. Yeomans, -"Lattice Boltzmann simulations of contact line motion. II. Binary fluids", Phys. Rev. E 69 (3), 031603 (2004).
  • [14] P. Seppecher, "Moving contact lines in the Cahn-Hilliard theory", Int. J. Eng. Sci. 34 (9), 977-992 (1996).
  • [15] D. Jacqmin, "Contact-line dynamics of a diffuse fluid interface", J. Fluid Mech. 402, 57-88 (2000).
  • [16] H.Y. Chen, D. Jasnow, and J. Vinals, "Interface and contact line fiction in a two phase fluid under shear flow", Phys. Rev. Lett. 85 (8), 1686-1689 (2000).
  • [17] J.F. Zhang and D.Y. Kwok, "Lattice Boltzmann study on the contact angle and contact line dynamics of liquidvapor interfaces", Langmuir 20 (19), 8137-8141 (2004).
  • [18] R. Benzi, L. Biferale, M. Sbragaglia, S. Succi, and F. Toschi, "Mesoscopic modeling of a two-phase flow in the presence of boundaries: the contact angle", Phys. Rev. E 74 (2), 021509 (2006).
  • [19] A. Dupuis and J. M. Yeomans, "Lattice Boltzmann modelling of droplets on chemically heterogeneous surfaces", Fut. Gen. Camp. Sys. 20 (6), 93-1001 (2004).
  • [20] A. Dupuis and J.M. Yeomans, "Modeling droplets on superhydrophobic surfaces: Equilibrium states and transitions", Langmuir 21 (6), 2624-2629 (2005).
  • [21] N.P. Sandreuter, "Predicting plint mottle - a method of differentiating between 3 types of mottle", Tappi J. 77 (7),173-182 (1994).
  • [22] H. Kusumaatmaja and J.M. Yeomans, "Controlling drop size and polydispersity using chemically patterned surfaces", Langmuir 23 (2), 956-959 (2007).
  • [23] H. Kusumaatmaja, J. Leopoldes, A. Dupuis, and J. M. Yeomans, "Drop dynamics on chemically patterned surfaces", Europhys. Lett. 73 (5), 740--746 (2006).
  • [24] A. Dupuis, J. Leopoldes, and J. M. Yeomans, "Control of drop positioning using chemical patterning", Appl. Phys. Lett. 87 (2), 024103 (2005).
  • [25] A.B.D. Cassie and S. Baxter, "Wettability of porous surfaces", Trans. Faraday Soc. 40, 546-551 (1944).
  • [26] R.N. Wenzel, "Resistance of solid surfaces to wetting by water", Ind. Eng. Chem. 28 (8), 988-994 (1936).
  • [27] L.W. Schwartz and S. Garoff, "Contact-angle hysteresis on heterogeneous surfaces", Langmuir 1 (2), 219-230 (1985).
  • [28] J.F. Joanny and P.G. de Gennes, "A model for contact angle hysteresis", J. Chem. Phys. 81 (1), 552-562 (1984).
  • [29] R.E. Johnson and R.H. Dettre, "Contact angle hysteresis. I. Study of an idealized rough surface", Advan. Chem. Ser. 43, 112-135 (1964).
  • [30] R.E. Johnson and R.H. Dettre, "Contact angle hysteresis. III. Study of an idealized heterogeneous surface", J. Phys. Chem. 68 (7), 1744-1750 (1964).
  • [31] C. Huh and S.G. Mason, "Effects of surface-roughness on wetting (theoretical)", J. Coli. Interf. Sci. 60 (1), 11-38 (1977).
  • [32] J.F. Oliver, C. Huh, and S.G. Mason, "Resistance to spreading of liquids by sharp edges", J. Coli. Interf. Sci. 59 (3), 568-581 (1977).
  • [33] W. Chen, A.Y. Fedeev, M.C. Hsieh, D. Oner, J. Youngblood, and T. J. McCarthy, "Ultrahydrophobic and ultralyophobic surfaces: same comments and examples", Langmuir 15 (10), 3395-3399 (1999).
  • [34] C. Ishino, K. Okumura, and D. Quere, "Wetting transitions on rough surfaces", Europhys. Lett. 68 (3), 419-425 (2004).
  • [35] M. Reyssat, J.M. Yeomans, and D. Quere, Europhys. Lett., (2007), (to be published).
  • [36] A. Dupuis, and J.M. Yeomans, "Dynamics of sliding drops on superhydrophobic surfaces", Europhys. Lett. 75 (1), 105-111 (2006).
  • [37] J. Oli, B. Perot, and J. Rothstein, "Laminar drag reduction in microchannels using ultrahydrophobic surfaces", Phys. Fluids 16 (12), 4635-4643 (2004).
  • [38] E. Lauga and H. A. Stane, "Effective slip in pressure driven Stokes flow", J. Fluid Mech. 489, 55-77 (2003).
  • [39] J.R Philip, "Flows satisfying mixed no-slip and noshear conditions", Z. Angew. Math. Phys. 23 (3), 353-372 (1972).
  • [40] C. Cottin-Bizonne, J.L. Banat, L. Bocquet, and E. Charlaix, "Low-friction flows of liquid at nanopatterned interfaces", Nature Mat. 2 (4), 237-240 (2003).
  • [41] M. Sbragaglia, R. Benzi, L. Biferale, S. Succi, and F. Toschi, "Surface roughness-hydrophobicity coupling in microchannel and nanochannel flows", Phys. Rev. Lett. 97 (20), 204503 (2006).
  • [42] J.F. Zhang, B. Li, and D.Y. Kwok, "Mean-field free-energy approach to the lattice Boltzmann method for liquid-vapor and solid-fluid interfaces", Phys. Rev. E 69 (3), 032602 (2004).
  • [43] T. Podgorski, J.-M. Flesselles, and L. Limat, "Corners, cusps, and pearls in running drops", Phys. Rev. Lett. 87 (3), 036102 (2001).
  • [44] S.R Hodges, O.E. Jensen, and J.M. Rallison, "Sliding, slipping and rolling: the sedimentation of a viscous drop down a gently inclined pIane", J. Fluid Mech. 512, 95-131 (2004).
  • [45] Y.C. Tan, J.S. Fisher, AJ. Lee, V. Cristini, and A.P. Lee, "Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting", Lab Chip 4 (4), 292-298 (2004).
  • [46] P. Aussillous and D. Quere, "Properties of liquid marbles", Proc. R. Bac. A 462 (2067), 973-999 (2006).
  • [47] T. Inamuro, T. Ogata, S. Tajima, and N. Konishi, "A lattice Boltzmann method for incompressible two-phase flows wit h large density differences", J. Camp. Phys. 198 (2), 628-644 (2004).
  • [48] K. Stratford, R Adhikari, I. Pagonabarraga, and J.-C. Desplat, "Lattice Boltzmann for binary fluids wit h suspended colloids", J. Stat. Phys. 121 (1-2), 163-178 (2005).
  • [49] M. Schnall-Levin, E. Lauga, and M. P. Brenner, "Selfassembly of spherical particles on an evaporating sessile droplet", Langmuir 22 (10), 4547-4551 (2006).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0025-0037
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.