PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface effects of adsorbed organic species on electrical properties of Au nanowires

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Effects from adsorption of organic species on the surface of nanomaterials have been investigated. Exposure to organic contaminants during material processing, handling and environmental exposure is unavoidable during the manufacturing process of nanoscale materials. In addition, at the nanoscale, surface area to volume ratios increase and surface effects will have an increasing influence on the material properties. Experimentally measured electrical properties of gold nanowires and compo-sition will be presented. The results indicated that C, C-O-C and C=O are adsorbed at the surface of the gold nanowires. These surface contaminants are believed to cause the increase in measured resistivity. A theoretical study was performed to investigate , diffusion of these contaminants into the first surface layer, which may act as scattering mechanisms for current flow.
Słowa kluczowe
Rocznik
Strony
187--194
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
autor
  • Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor Street (MC 251), Chicago, IL 60607 USA, clilley@uic.edu
Bibliografia
  • [1] G.C, Bond and D.T. Thompson, "Catalysis by gold", Catal. Rev. Sci. Eng. 41, 319 (1999).
  • [2] D.H. Wells, W.N. Delgass, and KT. Thomson, "Density functional theory investigation of gold cluster geometry and gas-phase reactivity with 0-2", J. Chem. Phys. 117, 10597 (2002).
  • [3] N. Lopez, T.V.W. Janssens, B.S. Clausen, Y. Xli, M. Mavrikakis, T. Bligaard, and J.K Norskov, "On the origin of the catalytic activity of gold nanoparticles for low temperature CO oxidation", J. Catal. 223, 232 (2004).
  • [4] A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, p, Royer, and G.P. Wiederrecht, "Surface plasmon characteristics of tunable photoluminescence in single gold nanorods", Phys. Rev. Lett. 95, 267405 (2005).
  • [5] K.G. Thomas, S. Barazzouk, B.I. Ipe, Joseph, S.T.S. Joseph, and P.V. Karnat, "Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods", J. Phys. Chem. B 108, 13066-13068 (2004).
  • [6] N.I. Kovtyukhova, and T.E. Mallouk, "Nanowires as building blocks for self-assembling logic and memory circuits", Chem. Eur. J. 19, 4355-4363 (2002).
  • [7] F. Peters, P. Steadman, H. Isern, J. Alvarez, and S. Ferrer, "Elevated-pressure chemical reactivity of carbon monoxide over Au(111)", Surf. Sci. 467, 10 (2000).
  • [8] P. Steadman, K Peters, H. Isern, J. Alvarez, and S. Ferref, "Interaction of CO with the reconstructed Au(111) surface near atmospheric pressures", Phys. Rev. B. 62, R2295 (2000).
  • [9] Y. Jugnet, F.J.C.S. Aires, C. Deranlot, L. Piccolo, and J.C. Bertolini, "CO chemisorption on Au(110) investigated under elevated pressures by polarized reflection absorption infrared spectroscopy and scanning tunneling microscopy", Surf. Sci. 521, L639 (2002).
  • [10] L. Piccolo, D, Loffreda, F.J.C.S. Aires, C. Deranlot, Y. Jugnet, P. Sautet, and J.C. Bertolini, "The adsorption of CO on Au(111) at elevated pressures studied by STM, RAIRS and DFT calculations", Surf. Sci. 566, 995 (2004).
  • [11] C. Pupier, C. Pijolat, J.C. Marchand, and R. Lalauze, "Oxygen role in the electrochemical response of a gas sensor using ideally polarizable electrodes", J. Electrochem. Soc. 146, 2360--2364 (1999).
  • [12] M.E. Schraeder, "Chemisorption of oxygen to gold: AES study of catalytic effect of calcium", Surf. Sei. 78, L227 (1978).
  • [13] J.J. Pireaux, M. Chtaib, J.P. Delrue, P.A. Thiry, M. Liehr, and R. Caudano, "Electron spectroscopic characterization of oxygen-adsorption on gold surfaces substrate impurity effects on molecular-oxygen adsorption in ultra high-vacuum", Surf. Sci. 141, 211 (1984).
  • [14] R.C. Han, A. Van der Ven, G. Ceder, and B.J. Hwang, "Surface segregation and ordering of alloy surfaces in the presence of adsorbates", Phys. Rev. B. 72, 205409 (2005).
  • [15] Y. Iizuka, A. Kawarnoto, K. Akita, M. Date, S. Tsubota, M. Okurnura, and M. Haruta, "Effect of impurity and pretreatment conditions on the catalytic activity of Au powder for CO oxidation", Catal. Lett. 97, 203 (2004).
  • [16] T. Ishida, S. Tsuneda, N. Nishida, M. Hara, H. Sasabe, and W. Knoll, "Surface-conditioning effect of gold substrates on octadecanethiol self-assembled monolayer growth", Langmuir 13, 4638-4643 (1997).
  • [17] J .L. Trevor, K.R. Lykke, M.J. Pellin, and L. Hanley, "Two-laser mass spectrometry of thiolate, disulfide, and sulfide self-assembled monolayers", Langmuir 14, 1664-1673 (1998).
  • [18] C.M. Lilley and Q. Huang, "8urface contamination effects on resistance of gold nanowires", Appl. Phys. Lett. 89, 1 (2006).
  • [19] B.V. Crist, Handbook of Monochromatic XPS Spectra, 1. The Elements and Native Oxides, Vol. 1, XPS International, 1999.
  • [20] J.F. Watts and J. Wolstenholme, An Introduction to Surface Analysis by XPS and AES, Wiley, 2003.
  • [21] D.R. Lide, Handbook of Chemistry and Physics, 75th ed., CRC, New York, 1996.
  • [22] C. Durkan and M.E. Welland, "Analysis of failure mechanisms in electrically stressed gold nanowires", Ultramicroscopy 82, 125-133 (2000).
  • [23] C. Durkan and M.E. Welland, "Size effects in the electrical resistivity of polycrystalline nanowires", Phys. Rev. B 61 (20), 14215-14218 (1999).
  • [24] G. Kresse and J. Furthmuller, "Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set", Phys. Rev. B 54, 11169 (1996).
  • [25] G. Kresse and J. Furthmuller, "Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set", Comp. Mater. Sci. 6, 15 (1996).
  • [26] D. Vanderbilt, "80ft self-consistent pseudopotentials in a generalized eigenvalue formalism", Phys. Rev. B 41, 7892 (1990).
  • [27] J .P. Perdew and Y. Wang, "Accurate and simple analytic representation of the electron-gas correlation-energy", Phys. Rev. B 45, 13244 (1992).
  • [28] H.J. Monkhurst and J.D. Park, "Special points for Brillion-zone integrations", Phys. Rev. B 13,5188 (1976).
  • [29] D.E. Jiang and E.A. Carter, "Car bon dissolution and diffusion in ferrite and austenite from first principles", Phys. Rev. B 67, (2003).
  • [30] G. Henkelman, B.P. Uberuaga, and H. Jonsson, "A climbing image nudged elastic band method for finding saddle points and minimum energy paths", J. Chem. Phys. 113, 9901 (2000).
  • [31] A.U. Nilekar, J. Greeley, and M. Mavrikakis, "A simple rule of thumb for diffusion on transition-metal surfaces", Angew Chem. Int. Edit. 45, 7046 (2006).
  • [32] L.L. Jia, Y. Wang, and KN. Fan, "Theoretical study of atomic oxygen adsorption on the chlorine-modified Ag(111) surface", J. Phys. Chem. B 107, 3813 (2003).
  • [33] H. Iddir, S. Ogut, P. Zapol, and N.D. Browning, "Diffusion mechanisms of native point defects in rutile TiO2", Phys. Rev. B 75, 073203 (2007).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0025-0035
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.