PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Self-diffusion effects in micro scale liquids. Numerical study by a dissipative particle dynamics method

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mesoscale flows of liquid are of great importance for various nano- and biotechnology applications. Continuum model do not properly capture the physical phenomena related to the diffusion effects, such as Brownian motion. Molecular approach on the other band, is computationally too expensive to provide information relevant for engineering applications. Hence, the need for a mesoscale approach is apparent. In recent years many mesoscale models have been developed, particularly to study flows of gas. However, mesoscale behaviour of liquid substantially differs tram that of gas. This paper presents a numerical study of micro-liquids phenomena by a Voronoi Dissipative Particle Dynamics method. The method bas its origin tram the material science field and is one of very few numerical techniques which ran describe correctly molecular diffusion processes in mesoscale liquids. This paper proves that correct prediction of molecular diffusion effects plays predominant role on the correct prediction of behaviour of immersed structures in the mesoscopic flow.
Rocznik
Strony
159--171
Opis fizyczny
Bibliogr. 44 poz., rys.
Twórcy
  • Institute of Fundamental Technological Research, Polis h Academy of Science, 21 Świętokrzyska St., 00-049 Warsaw, Poland, jczer@ippt.gov.pl
Bibliografia
  • [1] M. Gad-el-Hak, "T he fluid mechanics of microdevices the freeman scholar lecture", J. Fluids Eng. 121, 533 (1999).
  • [2] H. Herwig, "Flow and beat transfer in micro systems: is everything different or just smaller?", Z. Angew. Math. Mech. 82, 579586 (2002).
  • [3] K. Pohl, M.C. Bartelt, J. de la Figuera, N.C. Bartelt, J. Hebek, and R.Q. Hwang, "Identifying the forces responsible for self-organization of nanostructures at crystal surfaces", Nature 397, 238241 (1999).
  • [4] W. Dzwinel and D. A. Yueny, "A two-level, discreteparticle approach for simulating ordered colloidal structures", J. Coli. Interf. Sc. 225, 179190 (2000).
  • [5] I. Aranson, S.B. Meerson, P.V. Sasorov, and V.M. Vinokur, "Phase separation and coarsening in electrostatically driven granular media", Phys. Rev. Lett. 88, 204301-204314 (2002).
  • [6] A.A. Darhuber and S.M. Troian, "Principles of microfluidic actuation by modulation of surface tension", Annu. Rev. Fluid Mech. 37, 425455 (2005).
  • [7] C.-M. Ho and Y-C. Tai, "Micro-electro-mechanical systems (MEMS) and fluid flows", Annu. Rev. Fluid Mech. 30, 579612 (1998).
  • [8] H.A. Stone, A.D. Stroock, and A. Ajdari, "Engineering flows in small devices: microfluidics towards a lab-on-a-chip", Annu. Rev. Fluid Mech. 36, 381411 (2004).
  • [9] S. Senapati and M.L. Berkowitz, "Computer simulation study of the interface width of the liquid /liquid interface", Phys. Rev. Lett. 87 (17),176101-176114, (2001).
  • [10] C. Denniston and M. O. Robbins, "Molecular and continuum boundary conditions for a miscible binary fluid", Phys. Rev. Lett. 87 (17), 178302-178314 (2001).
  • [11] A. Jabbarzadeh, J.D. Atkinson, and R I. Tanner, "Effect of the wall roughness on slip and rheological properties of hexadecane in molecular dynamics simulation of Couette shear flow between two sinusoidal walls", Phys. Rev. E 61 (1), 690699 (2000).
  • [12] M. Cieplak, J. Koplik, and J.R Banavar, "Boundary conditions at a fluid-solid interface", Phys. Rev. Lett. 86 (5), 803806 (2001).
  • [13] M. Knott and I.J. Ford, "Surface tension and nucleation rate of phases of a charged colloidal suspension",. Phys. Rev. E 65, 061401-061413, (2002).
  • [14] D.E. Smith, H. P. Babcock, and S. Chu, "Single-polymer dynamics in steady shear flow", Science 283, 17241727 (1999).
  • [15] R.J. Davenport, G.J.L. Wuite, R. Landick, and C. Bustamante, "Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase", Science 287, 24972500 (2000).
  • [16] W.K. Kegel and A. van Blaaderen, "Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions", Science 287, 290293 (2000).
  • [17] D. Nykypanchuk, H.H. Strey, and D.A. Hoagland, "Brownian motion of DNA confined within a two-dimensional array", Science 297, 987990 (2002).
  • [18] J. van der Gucht, N.A.M. Besseling, W. Knoben, Lo Bouteiller, and M.A. Cohen Stuart, "Brownian particles in supramolecular polymer solutions", Phys.Rev. E 67, 051106-051110 (2003).
  • [19] A.E. Pelling, S. Sehati, KB. Gralla, J.S. Valentine, and J .K. Gimzewski, "Local nanomechanical motion of the cell wall of Saccharomyces Cerevisiae", Science 305, 11471150 (2004).
  • [20] J.-L. Barrat and J.-P. Hansen, Basic Concepts for Simple and Complex Liquids, Univ. Press, Cambridge, 2003.
  • [21] P. Koumoutsakos, "Multiscale flow simulations using particles", Annu. Rev. Fluid Mech. 37, 457487 (2005).
  • [22] H. Brenner, "Is the tracer velocity of a fluid continuum equal to its mass velocity?", Phys. Rev. E 70, 061201-061210 (2004).
  • [23] S. Chen and G.D. Doolen, "Lattice Boltzmann method for fluid flows", Annu. Rev. Fluid Mech. 30, 329364 (1998).
  • [24] A.J.C. Ladd, "Short time motion of colloidal particles: Numerical simulations via a fluctuating lattice Boltzmann equation", Phys. Rev. Lett. 70, 1330-1342 (1993).
  • [25] P.J. Hoogerbrugge and J.M.V.A. Koelman, "Simulating microscopic hydrodynamics phenomena wit h dissipative particle dynamics", Europhys. Lett. 19, 155160 (1992).
  • [26] C.L. Henry, C. Neto, D.R. Evansa, S. Biggs, and V.S.J. Craig, "The effect of surfactant adsorption on liquid boundary slippage", Physica A 339, 6065 (2004).
  • [27] R.D. Groot, "Application of dissipative particle dynamics", Lect. Notes Phys. 640, 538 (2004).
  • [28] X. Fan, N. Phan-Thien, N.T. Yong, X.Wu, and D. Xli, "Microchannel flow of a macromolecular suspension", Phys. Fluids 51, 1121 (2003).
  • [29] U. Salecker, J. Czerwinska, N.A. and Adams, "Modelling of micro-cavity flow a Dissipative Particle Dynamics method", Proceed. GAMM (2004).
  • [30] C.P. Lowe, "Alternative approach to dissipative particle dynamics", Europhys. Lett. 47, 145151 (1999).
  • [31] J. Bonet Avalos and A.D. Mackie, "Dissipative particle dynamics wit h energy conservation", Europhys. Lett. 40, 141146 (1997).
  • [32] X.F. Yuan, R.C. Ball, and S.F. Edwards. "A new approach to modelling voscpelastic fluid flows", J. Non Newtonian Fluid Mech- 46, 331350 (1993).
  • [33] E.G. Flekkoy and P. V. Coveney, "From Molecular Dynamics to Dissipative Particle Dynamics", Phys. Rev. Lett. 83, 17751778 (1999)
  • [34] K.G. Flekkoy, P.V. Coveney, and G. De Fabritiis, "Foundations of dissipative particle dynamics", Phys. Rev. E 62, 21402157(2000).
  • [35] M. Serrano, G. De Fabritiis, P. Espanol, K G. Flekkoy, and P.V. Coveney, "Mesoscopic dynamics of Voronoi fluid particles", J. Phys. A: Math. Gen. 35, 16051625 (2002).
  • [36] M. Serrano and P. Espanol, "Thermodynamically consistent mesoscopic fluid particle model", Phys. Rev. E 64, 046115-046118 (2001).
  • [37] H. C. Ottinger, "General projection operator formalism for the dynamics and thermodynamics", Phys. Rev. E 57, 1416 (1999).
  • [38] A. Crut, D. Lasne, J.-F. Allemand, M. Dahan, and P. Desbiolles, "Transverse fluctuations of single DNA molecules attached at both extremities to a surface", Phys.Rev. E 67, 051910-051916 (2003).
  • [39] P.S. Doyle, KS.G. Shaqfeh, and A. P. Gast, "Dynamic simulation of freely draining flexible polymers in steady linear flows", J. Flid Mech. 334, 251291 (1997).
  • [40] R.M. Jendrejack, K.T. Dimalanta, D.C. Schwartz, M.D. Graham, and J.J. de Pablo, "DNA dynamics in a microchannel", Phys. Rev. E 91 (3), 038102-038114 (2003).
  • [41] B. Ladoux and P. S. Doyle, "Stretching tethered DNA chains in shear flow", Euro Phys. Lett. 52,511517 (2000).
  • [42] C.P. Lowe and M.W. Dreisehor, "Simulating the dynamics of the mesoscopic systems", Lett. Notes Phys. 640, 3968 (2004).
  • [43] A.V. Lyulin, D.B. Adolf, and G.R. Davies, "Brownian dynamics simulations of linear polymers under shear flow", J. Chem. Phys. 111 (2), 758771 (1999).
  • [44] G. Albers, J.S.B. Mitchell, L.J. Guibas, and T. Roos, "Voronoi diagram of moving points", 3rd SWAT 92 (1992).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0025-0032
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.