PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stress corrosion cracking of magnesium

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The increased use of Mg-alloys for stressed automotive components has created a demand for a better mechanistic under-standing of the environmental and mechanical influences contributing to Transgranular Stress Corrosion Cracking (TGSCC). TGSCC is the inherent mode of failure for Mg alloys exposed to aqueous environments below their yield stress. It is gener-ally accepted that the predominant mechanism(s) for TGSCC is a type of Hydrogen Assisted Cracking (HAC); however, the specific nature of this mechanism(s) is equivocal. The most commonly proposed mechanism is Delayed Hydride Cracking (DHC). This work investigates its tenability by comparing experimental measurements of the stress corrosion crack velocity, Vc with predictions based on a numerical model for DHC. The measured velocity was in the range of 7x10-10 m/s to 5x10-9 m/s. The initial prediction of the DHC model is 5x10-7 m/s. An investigation into the sensitivity of the model to input parameters is currently underway.
Rocznik
Strony
83--92
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
autor
autor
autor
autor
  • Materials Engineering, The University of Queensland, Brisbane, Australia
Bibliografia
  • [1] Winzer N., Atrens A., Song G., Ghali E., Dietzel W., Kainer KU., Hort N., Blawert c.: A Critical Review of the Stress Corrosion Cracking (SCC) of Magnesium Alloys, Adv. Eng. Mater., 7, No. 8,2005, pp. 659-693.
  • [2] Meletis E.I., Hochman R.F.: Crystallography of Stress Corrosion Cracking in Pure Magnesium, Corrosion, 40, 1984, pp. 39-45.
  • [3] Chakrapani D.G., Pugh E.N.: Hydrogen Embrittlement in a Mg-Al Alloy, Met. Trans., 7A, 1976, pp. 173-178.
  • [4] Bursle A.J.., Pugh E.N.: On the Mechanism of Transgranular Stress-Corrosion Cracking, Mechanisms of Environment Sensitive Cracking of Materials, Swann P.R., Ford F.P., Westwood A.R.c. [ed.], Materials Society, London, 1977, pp. 471-481
  • [5] Makar G.L., Kruger J., Sieradzki K: Stress Corrosion Cracking of Rapidly Solidified Magnesium-Aluminium Alloys, Corros. Sci., 34, No. 8, 1993, pp. 1311-1342.
  • [6] Lynch S.P.: Mechanisms of Hydrogen Assisted Cracking - A Review, Hydrogen Effects on Material Behaviour and Corrosion Deformation Interactions, Moody N.R., Thompson AW., Ricker RE., Was G.W., Jones R.H. [ed.], TMS, 2003. pp. 449-466.
  • [7] Lynch S.P, Trevena S.: Stress Corrosion Cracking and Liquid Metal Embrittlement in Pure Magnesium, Corrosion, 44, 1988, pp. 113-124.
  • [8] Atrens A., Winzer N., Song G., Dietzel W., Blawert C.: Stress Corrosion Cracking and Hydrogen Diffusion in Magnesium, Adv. Eng. Mater., 8, 2006, pp. 749-751.
  • [9] Winzer N., Atrens A., Song G., Dietzel W., Blawert c., Kainer K.U.: Evaluation of Mg SCC Using LIST and SSRT, Proceedings of the 7th International Conference on Magnesium Alloys and Their Applications, DGM, Germany, pp. 715-720.
  • [10] Atrens A., Brosnan C.C., Ramamurthy S., Oehlert A., Smith I.O.: Linearly increasing stress test (LIST) for SCC research, Meas. Sci. Technol., 4, 1993, pp. 1281-1292.
  • [11] Oehlert A., Atrens A.: Stress corrosion crack propagation in AerMet 100, J Mater. Sci., 33, 1998, pp. 775-781.
  • [12] Oehlert A., Atrens A.: Environmental assisted fracture for 4340 steel in water and air of various humidities, J Mater. Sci., 32, 1997, pp. 6519-6523.
  • [13] Oehlert A., Atrens A.: The initiation and propagation of stress corrosion cracking in AISI 4340 and 3.5 Ni-Cr-Mo-V rotor steel in constant load tests, Corros. Sci., 38, 1996, pp. 1159-1170
  • [14] Oehlert A., Atrens A.: Room temperature creep of high strength steels, Acta Metall. Mater.,42, 1994, pp. 1493-1508.
  • [15] Dietzel W., Schwalbe K.H.: Monitoring Stable Crack Growth Using a Combined A.C./D.C. Potential Drop Technique, Z. Materialprüfung, 28, No II, 1986, pp. 368-372.
  • [16] Winzer N., Atrens A., Song G., Dietzel W., Kainer K.U.: Numerical Modelling of TGSCC in Mg Alloys, submitted for publication
  • [17] Lufrano J., Sofronis P., Birnbaum H.K: Modelling of Hydrogen Transport of Elastically Accommodated Hydride Formation Near a Crack Tip, 1. Mech. Phys. Solids, 44, No 2, 1996, pp. 179-205.
  • [18] Sofronis P., McMeeking R.M.: Numerical Analysis of Hydrogen Transport Near a Blunting Crack Tip, J. Mech. Phys. Solids, 37, No 3, 1989, pp. 317-350.
  • [19] Varias AG., Massih A.R: Hydride-Induced Embrittlement and Fracture in Metals - Effect of Stress and Temperature Distribution, J. Mech. Phys. Solids, 50,2002, pp. 1469-1510.
  • [20] Varias A.G., Feng 1.L.: Simulation of Hydride Induced Steady-State Crack Growth in Metals - Part I: Growth Near Hydrogen Chemical Equilibrium, Computational Mechanics, 34, 2004, pp. 339-356.
  • [21] Varias AG., Feng J.L.: Simulation of Hydride Induced Steady-State Crack Growth in Metals - Part II: General Near Tip Field, Computational Mechanics, 34, 2004, pp. 357-376.
  • [22] Krozer A., Kasemo B.: Equilibrium Hydrogen Uptake and Associated Kinetics for the Mg-H2 System at Low Pressures, l Phys.: Condens. Matter l, 1989, pp. 1533-1538.
  • [23] Ebtehaj K., Hardie D.: Parking R.N.: The Influence of Chloride-Chromate Solution Composition on the Stress Corrosion Cracking of a Mg-Al Alloy, Corros. Sci.,28, 1993, pp. 811-829.
  • [24] Wearmouth W.R, Dean G.P., Parking RN.: Role of Stress in the Stress Corrosion Cracking of a Mg-Al Alloy, Corrosion, 29, No 6, 1979, pp. 251-258.
  • [25] Stampella R.S., Proctor RP. M., Ashworth V.: Environmentally Induced Cracking of Magnesium, Corros. Sci., 24, No 4,1984, pp. 325-341.
  • [26] Chakrapani D.G., Pugh E.N.: On the Fractography of Transgranular Stress Corrosion Failures in a Mg-Al Alloy, Corrosion, 31,1975, pp. 247-252.
  • [27] Speidel M.O., Blackburn M.J., Beck TR, Feeney J.A.: Corrosion Fatigue and Stress Corrosion Crack Growth in High Strength Aluminium Alloys, Magnesium Alloys and Titanium Alloys Exposed to Aqueous Solutions, Corrosion Fatigue: Chemistry, Mechanics and Microstructure, NACE-2, 1972, pp. 324-345.
  • [28] Chakrapani D.G., Pugh E.N.: The Transgranular SCC of a Mg-Al Alloy: Crystalographic, Fractographic and Acoustic-Emission Studies, Met. Trans., 6A, 1975, pp. 1155-1163.
  • [29] Pugh E.H., Green J.A.S., Slattery P.W.: On the Propagation of Stress-Corrosion Cracks in a Magnesium-Aluminium Alloy, Fracture 1969: The Proceedings of the Second International Conference on Fracture, Pratt P.L. [ed.], Chapman and Hall Ltd, London, 1969, p. 387.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0025-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.