Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Macroscopic coefficients together with a Darcy law are obtained for porous piezoelectric medium wit h random, not necessarily ergodic, distribution of pores in which a two-ionic electrolyte flows. Peculiarities of stochastic porosity are indicated.
Słowa kluczowe
Rocznik
Tom
Strony
125--128
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
autor
- Institute af Fundamental Technologieal Research, Polish Academy of Sciences, 21 Świętokrzyska St., 00-049 Warszawa, Poland, rwojnar@ippt.gov.pl
Bibliografia
- [1] J.J. Telega and W. Bielski, "Flow in random porous media: effective models", Computers and Geotechnics 30(4), 271-88 (2003).
- [2] P.M. Adler, J.F. Thovert, and S. Bekri, "Lo cal geometry and macroscopic properties", in Interfacial Electrokinetics and Electrophoresis, pp. 35-51, edited by A. Delgado, Springer-Verlag, Symbolic Computation, Tokyo, 2002.
- [3] J.J. Telega and R. Wojnar. "Flow of electrolyte through porous piezoelectric medium: macroscopic equations", Comptes Rendus de l’Academic des Sciences IIB 328(3), 225-30 (2000).
- [4] A. Bourgeat, A. Mikelić, and S. Wright, "Stochastic two-scale convergence in the mean", Journal für die reine und angewandte Mathematik 456 (1), 19-51 (1994).
- [5] G.B. Reinish and A.S. Nowick, "Piezoelectric properties of bane as functions of moisture content", Nature 253(5493), 626-7 (1975).
- [6] J.J. Telega and R. Wojnar, "Piezoelectric effects in biological tissues", J. Theoretical and Applied Mechanics 40(3), 723-59 (2002).
- [7] J.J. Telega and W. Bielski, "Stochastic homogenization and macroscopic modelling of composites and the flow through porous media", Theoretical and Applied Mechanics Teorijska i Primenjena Mehanika28-29, 337-77 (2002).
- [8] J.J. Telega and W. Bielski, "Nonstationary flow of Stokesian fluid through random porous medium with elastic skeleton", in: Poromechanics II, pp. 569-574, edited by J.L. Auriault, C. Geindrau, P. Royer, J.F. Bloch, C. Boutin and J. Lewandowska, Tokyo, 2002.
- [9] P.M. Adler and J.F. Thovert, "Real porous media: local geometry and macroscopic properties", Applied Mechanics Reviews 51(9),537-585 (1998).
- [10] J.J. Telega, "Piezoelectricity and homogenization. Application to biomechanics", in Continuum Models and Discrete Systems, pp. 220-229 edited by G.A. Maugin, Longman, Essex, 1991.
- [11] W. Bielski, J.J. Telega, and R. Wojnar, "Macroscopic equations for nonstationary flow of Stokesian fluid through porous elastic medium", Archives of Mechanics 51(3-4), 243-274 (1999), (in Polish).
- [12] W.Y. Gu, W.M. Lai, and V.C. Mow, "A mixture theory for charged-hydrated soft tissues containing multielectrolytes: passive transport and swelling behaviors", J. Biomechanical Engineering 120(2),169-80 (1998).
- [13] J.M. Huyghe and J.D. Janssen, "Quadriphasic mechanics of swelling incompressible porous media", Int. J. Engineering Science 35(8), 793-802 (1997).
- [14] W.M. Lai, V.C. Mow, and V. Roth, "Effects of nonlinear strain-dependent permeability and the rate of compression on the stress behavior of articular cartilage", J. Biomechanical Engineering 103(2), 61-6 (1981).
- [15] D.G. Levitt, "The use of streaming potential measurements to characterize biological ion channels", in Membrane Transport and Renal Physiology, pp. 53-63, edited by H.E. Layton and A.M. Weinstein, Springer, New York, 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0021-0021