Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper is an overview of the application potential and design challenges of micro air vehicles (MAVs), defined as small enough to be practical for a single-person transport and use. Four types of MAVs are considered: 1) fixed-wing, 2) rotary-wing, 3) ornithopters (bird-like flapping) and 4) entomopters (insect-like flapping). In particular, advantages of a propeller-driven delta wing configuration for type 1 are discussed. Same detail is also given for type 4, the least understood of the four, including a new concept of manoeuvre control for such MAVs. The paper concludes with a brief prognostic of the future of each MAV type.
Słowa kluczowe
Rocznik
Tom
Strony
91--98
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
autor
- The Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 24 Nowowiejska St., 00-665 Warszawa, Poland, cegal@mail.pw.edu.pl
Bibliografia
- [1] C. Galiński, "Influence of MAV characteristics on their applications", Aviation IX (4),16-23 (2005).
- [2] S. Watkins and W. Melbourne, "Atmospheric winds: implications for MAVs", Proc. XVIII International UA V Conf. 26, Bristol, UK, (2003).
- [3] C. Galinski, N. Lawson, and R. Żbikowski, "Delta wing with leading edge extension and propeller propulsion for fixed wing MAV", Proc. 24th Int. Congress of the Aeronautical Sciences ICAS, Yokohama, (2004).
- [4] J. Wojciechowski, "Active control of the boundary layer on the laminar airfoil", Inženyrskà Mechanika'99, Svratka, 813-818 (1999).
- [5] C. Dohring, Der Schub des schlagenden Flügels und seine Anwendung zur Grenzschichtbeeinflussung - eine experimentelle und numerische Untersuchung, Doctor Thesis, Fakultät für Luft - und Raumfahrttechnik der Universität der Bundeswehr München, 25-30 (1998).
- [6] U. Rist, "Instability and transition mechanisms in laminar separation bubbles", Von Karman Institute Lecture Series RTO/AVT-104 (5), (2003).
- [7] U. Rist and K Augustin, "Control of Laminar Separation bubbles", Von Karman Institute Lecture Series RTO/AVT-104 (6), (2003).
- [8] KD. Jones and M.F. Platzer, "Experimental investigation of the aerodynamic characteristics of flapping-wing micro air vehicles", 41st Aerospace Sciences Meeting and Exhibit AIAA-2003-0418, (2003).
- [9] C. Galinski, "Gust resistant fixed wing Micro Air Vehicle", J. Aircraft 43(5), 1586-1588 (2006)
- [10] http://robots.engadget.com/entry/7278520217452629/.
- [11] http://www.space.com/businesstechnology/flying_robot_040819.html.
- [12] http://news.bbc.co.uk/l/hi/technology/3579232.stm.
- [13] http://www.defense-update.com/features/du-2-04/mav-oav.htm.
- [14] A. Azuma, The Biokinetics of Flying and Swimming, Springer- Verlag, Tokyo, 1992.
- [15] A. Marusak, J. Narkiewicz, J. Pietrucha, and K. Sibilski "Maneuvers of animalopters as a deformation problem of a flexible wing control", Aviacija 5, 65-71 (2000).
- [16] H. Helvajian, "Microengineering aerospace systems AIAA, 553-580 (1999).
- [17] J.D. DeLaurier, "An ornithopter wing design", Canadian Aeronautics and Space Journal 40 (1), 10-17 (1994).
- [18] J.D. DeLaurier, "The development and testing af a fullscale piloted ornithopter", Canadian Aeronautics a Space Journal 45 (2), 72-82 (1999).
- [19] S.A. Ansari, R. Żbikowski, and K Knowies, "Non-linear unsteady aerodynamic model for insect-like flapping wings in the hover. Part 1: methodology and analysis”, J. Aerospace Engineering 220 (2), 61-83 (2006).
- [20] S.A. Ansari, R Żbikowski, and K. Knowies, "Non-linear unsteady aerodynamic model for insect-like flapping wings In the hover. Part 2: implementation and validation", J. Aerospace Engineering 220 (3), 169-186 (2006).
- [21] G.K. Taylor and R Żbikowski, "Nonlinear time-periodic models of the longitudinal flight dynamics of desert locust Schistocerca gregaria", J. Royal Society Interface 2, 197-221 (2005).
- [22] RS. Fearing, K. Chiang, M. Dickinson, D. Pick, M. Sitti, and J. Yan, "Wing transmission for a micromechanical flying insect", Proc. IEEE Int. Conf. Robotics and Automation, ICRA '2000 2, 1509-1516 (2000).
- [23] R Żbikowski, "Cycle of a wingbeat", Unmanned Vehicles 8 (4), 35-38 (2003).
- [24] R Żbikowski, C. Galiński, and C.B. Pedersen, "A four-bar linkage mechanism for insect-like flapping wings in hover: Concept and an outline of its realisation", J. Mechanical Design 127, 817-824 (2005).
- [25] C. van den Berg and C.P. Ellington, "The three-dimensional leading-edge vortex of a 'hovering' model hawkmoth", Philosophical Transactions of the Royal Society of London, Biological Sciences B 352 (1351), 329-340 (1997).
- [26] C. van den Berg, C.P. Ellington, "The wortex wake of a 'hovering' model hawkmoth", Philosophical Transactions of the Royal Society of London, Biological Sciences B 352 (1351), 317-328 (1997).
- [27] M.H. Dickinson, F.O. Lehmann, and S.P. Sane, "Wing rotation and the aerodynamic basis of insect flight", Science 284, 1954-1960 (1999).
- [28] S.P. Sane and M.H. Dickinson, "The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight", J. Experimental Biology 205, 1087-1096, (2002).
- [29] S.A. Ansari, private correspondence.
- [30] K. Loh, M.V. Cook, and P.G. Thomasson, "The hovering and low speed dynamics and control of a flapping wing MAV", Proc. XVIII Int. UA V Conference 24, Bristol, UK, 2003.
- [31] K. Loh, M.V Cook, and P.G. Thomasson, "An investigation into the longitudinal dynamics and control of a flapping wing micro air vehicle at hovering flight", Aeronautical Journal 107, 1078 (2003).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0021-0017