PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A computational continuum-discrete model of materials

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper contains a description of a multiscale algorithm based on the boundary element method (BEM) coupled with a discrete atomistic model. The atomic model uses empirical pair-wise potentials to describe interactions between atoms. The Newton-Raphson method is applied to solve a nanoscale model. The continuum domain is modelled by using BEM. The application of BEM reduces the total number of degrees of freedom in the multiscale model. Same numerical results of simulations at the nanoscale are shown to examine the presented algorithm.
Rocznik
Strony
85--89
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
autor
autor
  • Department for Strength of Materials and Computational Mechanies, Silesian University of Technology, 18a Konarskiego St., 44-100 Gliwice, Poland, tadeusz.burczyński@polsl.pl
Bibliografia
  • [1] R.E. Miller and E.B. Tadmor, "The quasicontinuum method: overview, applications and current directions", J. Computer-Aided Materials Design 9, 203-239 (2002).
  • [2] K. Liu, E.G. Karpov, S. Zhang, and H.S. Park, "An introduction to computational nanomechanics and materials", Computer Methods in Applied Mechanics and Engineering 193, 1529-1578 (2004).
  • [3] H. Rafii-Tabar, L. Hua, and M. Cross, "A multi-scale numerical modelling of crack propagation in a 2D metallic plate", J. Computer-Aided Materials Design 4,165-173 (1997) .
  • [4] A. Mrozek and T. Burczyński, "Analysis of the material behaviour at the nanoscale", Proc. 35 th Solid Mechanics Conf., Kraków, 283-284 (2006).
  • [5] A. Mrozek, W. Kuś, and T. Burczyński, "Application of the coupled boundary element method with atomic model in the static analysis", J. Computer Methods in Material Science 7 (2), 284-288 (2007).
  • [6] M.S. Daw and M.I. Basket, "Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals", Phys. Rev. Lett. 50 (17), 1285-1288 (1983).
  • [7] F.F. Abraham, J.Q. Broughton, and B.N. Davidson, "Large-scale simulations of crack-void and void-void plasticity in metallic fcc crystals under high strain rates", J. Computer-Aided Materials Design 5, 73-80 (1998).
  • [8] T. Burczyński, The Boundary Element Method in Mechanics, WNT, Warsaw, 1995.
  • [9] Y.W. Kwon, "Discrete atomic and smeared continuum modelling for static analysis", Engineering Computations 20 (8), 964-978 (2003).
  • [10] L.A. Girafaleo and V.G. Weizer, "Application of the Morse potential function to cubic metals", Physical Review 114 (3), 687-690 (1959).
  • [11] F. Stillinger and T. A. Weber, "Computer simulation of local order in condensed phases of silieon", Phys. Rev. B 31 (8), 5262-5271 (1985).
  • [12] R Sunyk and P. Steinmann, "On higher gradients in continuum-atomistic modeling", Int. J. Solids and Structures 40, 6877-6896 (2002).
  • [13] A. Mrozek, W. Kuś, P. Orantek, and T. Burczyński, "Prediction of the aluminium atoms distribution using evolutionary algorithm", in Recent Developments in Artificial Intelligence Methods, pp. 127-130, edited by T. Burczynski, W. Cholewa, M. Moczulski, AI-METH Series, Gliwice 2005.
  • [14] M. Habarta and T. Burczyński, "Boundary element formulation for gradient elastostatics", Proc. IABEM 2006 Conference, Graz, 119-122 (2006).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0021-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.