PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Axi-symmetric ice sheet flow with evolving anisotropic fabric

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An axially symmetric, gravity driven, steady flow of a grounded polar ice sheet with a prescribed temperature field is considered. The ice is treated as an incompressible, non-linearly viscous, anisotropic fluid, the internal structure (fabric) of which evolves as ice descends from the free surface to depth in an ice sheet. The evolution of the ice fabric is described by an orthotropic constitutive law which relates the deviatoric stress to the strain-rate, strain, and three structure tensors based on the current (rotating) principal stretch axes. The solution of the problem is constructed as a leading-order approximation derived from asymptotic expansions in a small parameter that reflects the small ratio of stress and velocity gradients in the lateral direction of the ice sheet to those in the thickness direction. Numerical simulations of the flow problem have been carried out for various sets of rheological parameters defining the limit strength of the anisotropic fabric in ice. The results of calculations illustrate the influence of the ice anisotropy, basal melt conditions and temperature field in ice on the glacier thickness and lateral span, and on the depth profiles of the flow velocity.
Rocznik
Strony
419--428
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
  • Institute of Hydro-Engineering, Polish Academy of Sciences, 17 Waryńskiego SL, 71-310 Szczecin, Poland, rstar@ibwpan.gda.pl
Bibliografia
  • [1] T. Thorsteinsson, J. Kipfstuhl, and H. Miller, “Textures and fabrics in the GRIP ice core”, J. Geophys. Res. 102(C12), 26583–26599 (1997).
  • [2] W. F. Budd and T. H. Jacka, “A review of ice rheology for ice sheet modelling”, Cold Reg. Sci. Technol. 16(2), 107–144 (1989).
  • [3] A. Mangeney, F. Califano, and O. Castelnau, “Isothermal flow of an anisotropic ice sheet in the vicinity of an ice divide”, J. Geophys. Res. 101(B12), 28189–28204 (1996).
  • [4] A. Mangeney, F. Califano, and K. Hutter, “A numerical study of anisotropic, low Reynolds number, free surface flow for ice sheet modeling”, J. Geophys. Res. 102(B10), 22749–22764 (1997).
  • [5] R. Staroszczyk and L. W. Morland, “Strengthening and weakening of induced anisotropy in polar ice”, Proc. R. Soc. Lond. Ser. A 457(2014), 2419–2440 (2001).
  • [6] L.WMorland and I. R. Johnson, “Steady motion of ice sheets”, J. Glaciol. 25(92), 229–246 (1980).
  • [7] R. Staroszczyk, Constitutive Modelling of Creep Induced Anisotropy of Ice, IBW PAN Publishing House, Gdańsk, 2004.
  • [8] R. Staroszczyk and L. W. Morland, “Orthotropic viscous response of polar ice”, J. Eng. Math. 37(1-3), 191–209 (2000).
  • [9] L. W. Morland and R. Staroszczyk, “Stress and strain-rate formulations for fabric evolution in polar ice”, Continuum Mech. Thermodyn. 15(1), 55–71 (2003).
  • [10] G. D. Smith and L. W. Morland, “Viscous relations for the steady creep of polycrystalline ice”, Cold Reg. Sci. Technol. 5(2), 141–150 (1981).
  • [11] A. C. Fowler and D. A. Larson, “On the flow of polythermal glaciers. I. Model and preliminary analysis”, Proc. R. Soc. Lond. Ser. A 363(1713), 217–242 (1978).
  • [12] K. Hutter, “The effect of longitudinal strain on the shear stress of an ice sheet: in defence of using stretched coordinates”, J. Glaciol. 27(95), 39–56 (1981).
  • [13] K. Hutter, Theoretical Glaciology. Material Science of Ice and the Mechanics of Glaciers and Ice Sheets, Reidel, Dordrecht, 1983.
  • [14] L. W. Morland, “Radially symmetric ice sheet flow”, Phil. Trans. R. Soc. Lond. Ser. A 355, 1873–1904 (1997).
  • [15] K. A. Cliffe and L. W. Morland, “Full and reduced model solutions of steady axi-symmetric ice sheet flow over bed topography with moderate slopes”, Continuum Mech. Thermodyn. 14(2), 149–164 (2002).
  • [16] L. W. Morland, “Steady plane isothermal linearly viscous flow of ice sheets on beds with moderate-slope topography”, Proc. R. Soc. Lond. Ser. A 456(1999), 1711–1739 (2000).
  • [17] C. Schoof, “The effect of basal topography on ice sheet dynamics”, Continuum Mech. Thermodyn. 15(3), 295–307 (2003).
  • [18] T. H. Jacka, “The time and strain required for development of minimum strain rates in ice”, Cold Reg. Sci. Technol. 8(3), 261–268 (1984).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0016-0027
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.