PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improving the resistance to stress corrosion cracking and to hydrogen embrittlement of bainite high strength steel

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Susceptibility to pitting corrosion, hydrogen transport, hydrogen embrittlement and susceptibility to stress corrosion cracking have been studied under the "sea water" and the "acid rain" simulated conditions in order to evaluate the optimum chemical composition, heat treatment, microstructure and surface treatment of the high strength low carbon bainite 0.3C-1Cr-1Mn-1Si-1Ni type steel for replacement the airplane parts. Resistance to stress corrosion cracking under the open circuit conditions, associated with the resistance to pitting corrosion in Cl- containing solution increased with decreasing carbon content and after application of shot peening. Resistance to hydrogen embrittlement was also higher for steel with the low carbon content. Shot peening increased the hydrogen trapping efficiency within deformed layer, but the presence of the shot peened layer decreased the hydrogen flux entering the core and thus decreased susceptibility of core to hydrogen embrittlement. The optimal chemical composition, heat treatment and surface treatment parameters, mechanical properties and microstructure of steel providing the improvement of the resistance to SCC in Cl¯ containing environments allowing the replacement of the standard 30HGSNAŻ steel at production of airplane parts have been evaluated.
Rocznik
Strony
35--41
Opis fizyczny
Bibliogr. 11 poz., rys., tab.
Twórcy
autor
  • Institute of Physical Chemistry of the Polish Academy of Sciences, Poland
autor
  • Institute of Physical Chemistry of the Polish Academy of Sciences, Poland
autor
  • Airforce Technical Institute, Warsaw, Poland
Bibliografia
  • 1. Lunarska E, Nikiforow K., Czerniajewa O., Sitko E.: Hydrogen embrittlement of 30HGSNA aircraft steel in Cl' containing environments. Proc. Intern. Conf. Eivironmental Degradation of Engineering Materials. Gdańsk, t.1, 1999 pp.334-339.
  • 2. Bailey P.G., Whalen J.M.: Surface Engineering. Elsevier Applied Science, London, 1990.
  • 3. Acid rain '95: Abstract Book. Kluwier Academic Publ., 1996.
  • 4. Lunarska E., Nikiforów K.; Określenie podatności na korozje wżerową stali konstrukcyjnych, w tym ze zmodyfikowaną powierzchnią. Ochrona przed Korozją 44 (2001), pp.115-119.
  • 5. Devanathan M.A.V., Stachurski Z.: The mechanism of hydrogen evolution on iron in acid solution by determination of permeation rate. J. Electrochemical Soc. 111 (1964) pp.619-623.
  • 6. Barrer R.M.: Diffusion trough and in Solids. Univ. Press. Cambridge, 1941.
  • 7. DeHoff D.T., Rhines F.N.: Quantitative Microscopy. McGraw-Hill, New York 1973.
  • 8. Szklarska-Smialowska Z.: Susceptibity of steels to hydrogen trapping evaluated by potentiostatic double pulse technique. Proc. Polish-Japanese Symposium on Technology Materials. Zakopane, 1997, pp.131-142.
  • 9. Turnbull A.: Factors Affecting the Reliability of Hydrogen Permeation Measurement. Material Science Forum 192-194 (1995) pp.63-79.
  • 10. Turnbull A., Carroll M.W., Ferriss D.H.: Analysis of hydrogen diffusion and trapping in a 13% Cr martensitic stainless steel. Acta Metall 37 (1989) pp.2039-2046.
  • 11. Iino M.: A more generalized analysis of hydrogen trapping. Acta metall. 30 (1982)pp.367-375
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0015-0036
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.