Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents a numerical thermal model of an encapsulated three-phase electrical transformer. The model is based on the multi-physical approach and involves heat transfer analysis coupled with the examination of specific power losses in the coils and the core using electromagnetic field analysis as well as determination of thermal stresses. The thermal boundary conditions (i. e. local heat fluxes) are determined by considering a numerical model of the surrounding air. Additionally, the device is cooled via radiation (from the external walls) and forced convection (a water cooling system). A few different configurations of the cooler and the heat pipes are also analyzed. Moreover, anisotropic material properties were applied for stranded coils and the core. A partial experimental validation of the model has shown that the temperature distribution within the transformer is more realistic and closer to the measurements when compared with the previous analysis limited to heat transfer problems only with uniform internal heat sources and isotropic material properties. The total heat transfer rate indicates that forced convection is the most important heat dissipation mechanism in this model. The significance of the water cooling system has also been established in calculations of crack presence in the model.
Wydawca
Rocznik
Tom
Strony
63--81
Opis fizyczny
Bibliogr. 31 poz., 9 rys.
Twórcy
autor
autor
autor
autor
- Institute of Thermal Technology, Silesian University of Technology, Konarskiego 22, 44 -1 00 Gliwice, Poland, smolka @itc.polsl.pl
Bibliografia
- [1] Altman G and Pfeiffer R 1984 Siemens Power Engng. 6 20
- [2] Le Roy G and Sandoz F 1985 Proc. 8th Int. Conf.- on Electricity Distribution, (CIRED), OK, p. 71-76
- [3] Smolka J 2001 Thermal Process Analysis in an Electrical Transformer Dipped into Polymerized Resin, MSC Thesis, Silesian University of Technology, Gliwice, Poland, and Brunel University, Uxorjdge, UK
- [4] Eckholz K, Knorr W, Schafer W, Feser K and Cardillo E 2004 Proc. Cigre 2004 Session, Paris, France, CD-ROM, paper A2-107
- [5] Chang H-M, Choi Y S, Sciver van S Wand Choi K D 2003 Cryogenics 43 589
- [6] Lefevre A, Miegeville L, Fouladgar J and Olivier G 2005 IEEE Trans. on Magnetics 30 1564
- [7] Biro O, Preis K and Buchgraber G 2005 Proc. Int. Conf. on Computational Methods for Coupled Problems in Science and Engineering Coupled Problems, Santorini, Greece, CD-ROM, Abstract Book p. 107
- [8] Garcia A, Espinosa-Paredes G and Hernandes I 2002 Computers and Electrical Engng. 28417
- [9] McLyman C 1998 Magnetic Core Selection for Transformers and Inductors, Marcel Deckker, New York
- [10] Radakovic Z and Maksimovic S 2002 Electrical Engng. 84 109
- [11] Smolka J, Nowak A J and Wróbel L C 2003 Computers and Fluids 33 859
- [12] Rao N N 1994 Elements of Engineering Electromagnetics, Prentice Hall, New Yersey
- [13] Basak A, Yu C -H and Lloyd G 1994 IEEE Trans. on Magnetics 30 3725
- [14] Venkatachalam K, Sullivan C R, Abdallah T and Tacca H 2002 Proc. 8th IEEE Workshop on Computers in Power Electronics, COMPEL 2002, Mayaguez, Puerto Rico, CD-ROM
- [15] Snelling E C 1988 Soft Ferrites, Properties and Applications, Butterwoths Publishing, Stoneham
- [16] Lefebvre L P, Pelletier Sand Gelinas C 1997 J. Magnetism and Magnetic Materials 176 93
- [17] Mulder S 1995 Power Conversion and Intelligent Motion 21 22
- [18] Goel N S, Gerboc J Sand Lehtonen J 2000 Int. Comm. Heat Mass Transfer, Part A 37 519
- [19] Fluent Inc. Product Documentation, http://www.fluent.com.
- [20] Ansys Product Documentation, http://www.ansys.com
- [21] Lussier D T, Ormiston R M and Marko R M 2003 Int. Comm. Heat Mass Transfer 30 313
- [22] Lehtonen J, Mikkonen Rand Paasi J 2000 Cryogenics 40 245
- [23] Smolka J, Nowak A J, St_pien M and Grzesik B 2004 Proc. Conf.- on Contemporary Problems of Thermal Engineering, Ustroń, Poland, pp. 435-442
- [24] Ozisik M N 1985 Heat Transfer. A Basic Approach, McGraw-Hill, New York
- [25] Anderson J D (Jr) 1995 Computational Fluid Dynamics. The Basics with Applications, McGraw-Hill, New York
- [26] Biro O. and Preis L 1989 IEEE Trans. on Magnetics 25 3145
- [27] Reinert J, Brockmeyer A and Doncker De R W 2001 IEEE Trans. on Industry Applications 37 1055
- [28] Białecki R A, Ostrowski Z, Kassab A J, Yin Q and Sciubba E 2002 Engineering Analysis with Boundary Elements 26 597
- [29] Garner S D and Toth J E, Heat Pipes: A Practical and Cost Effective Method for Maximizing Heat Sink Effectiveness, The Thermacore Inc. Website ttp://www.thermacor.
- [30] DeHoff R and Grubb K, Heat Pipes Application Guidelines, The Thermacor, http://www.thermacore.com.
- [31] Cook R D 1995 Finite Element Modeling for Stress Analysis, J Whey and 801
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0014-0006