PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Moving from micro- to nanoworld in optical domain scanning probe microscopy

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the article we described the evolution of optical technology tram lens-type microscopes working in far-field to SNOM (Scanning Near-Field Optical Microscopy) constructions. We considered two systems elaborated in our laboratory, namely PSTM system (photon Scanning Tunelling Microscope) and SNOM system. In both systems we obtained subwavelength resolution. Same details about optical point probe technology in both systems are given and experimental results presented.
Rocznik
Strony
25--32
Opis fizyczny
Bibliogr. 26 poz., 12 rys.
Twórcy
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, 11/17 Janiszewskiego St., 50-372 Wrocław, Poland, jacek@radojewski.net
Bibliografia
  • [1] R. Hooke, Micrographia or Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses with Observations and Inquiries Thereupon, London, 1665.
  • [2] E. Abbe, “Beitraege zur Teorie des Microskops und der Microskopischen Wahrnehmung”, Arch. Mikroskopische Anatomie 9, 413 (1873).
  • [3] J.W. Strutt (Lord Rayleigh), “Investigations in optics with special reference to the spectroscope”, Phil. Mag. 8, 261–274 (1879).
  • [4] K. Visscher, Optical Micromanipulation and Confocal Microscopy, Amsterdam, Universiteit van Amsterdam, 1993.
  • [5] M. Minsky, “Memories on inventing the confocal scanning microscope”, Scanning 10, 128–138 (1988).
  • [6] E.H Synge, “A suggested model for extending microscopic resolution into ultra-microscopic region”, Philos. Mag. 6, 356–362 (1928).
  • [7] D.W. Pohl,W. Denk, and M. Lanz, “Optical stethoscopy: image recording with a resolution ¸/20”, Appl. Phys. Lett. 44, 651–653 (1984).
  • [8] A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “Development of a 500 Å spatial-resolution light-microscope”, Ultramicroscopy 13, 227–231 (1984).
  • [9] Th. Enderle, T. Ha, D.S. Chemla, and S. Weiss, “Near-field fluorescence microscopy of cells”, Ultramicroscopy 71, 303–309 (1998).
  • [10] M.F. Garcia-Parajo, J.A. Veerman, A.G.T. Ruiter, and N.F. van Hulst, “Near-field optical and shear-force microscopy of single fluorophores and DNA molecules”, Ultramicroscopy 71, 311– 319 (1998).
  • [11] V. Deckert, D. Zeisel, R. Zenobi, and T. Vo-Dinh, “, Near-field surface-enhanced Raman imaging of dye labelled DNA with 100 nm resolution”, Anal. Chem. 70, 2646–2650 (1998).
  • [12] A. Hartschuh, N. Anderson, and L. Novotny, “Near-field Raman spectroscopy using a sharp metal tip”, J. Microsc. 210, 234–240 (2003).
  • [13] T. Ha, T. Enderle, D. S. Chemla, P. R. Selvin, and S. Weiss, “Single molecule dynamics studied by polarization modulation”, Phys. Rev. Lett. 77, 3979–3982 (1996).
  • [14] X.K. Orlik, M. Labardi, and M. Allegrini, “Nanometer scale observation of ferroelectric domains using an apertureless near field optical microscope”, Appl. Phys. Lett. 77, 2042–2044 (2000).
  • [15] R.C. Reddick, R.J. Warmack, and T.L. Ferrell, “New form of scanning optical microscopy”, Phys. Rev. B 39 (1), 767–770 (1989).
  • [16] H. Pagnia, J. Radojewski, and N. Sotnik, “Operation conditions of an optical STM”, Optik 86 (3), 87–90 (1990).
  • [17] J. Radojewski and T. Gotszalk, “Optical signal detection problems in photon scanning tunneling microscope (PSTM)”, Proc. ISHM Poland Chapter Conference, 255–258 (1996).
  • [18] J. Radojewski, N. Sotnik, and H. Pagnia, “Tip technology for optical scanning tunneling microscopy and its influence on image quality”, Int. J. of Electronics 76 (5), 973–980 (1994).
  • [19] D. Courjon, K. Sarayeddine, and M. Spayer, “Scanning tunneling optical microscopy”, Optics Communications 71, 23–28 (1989).
  • [20] M. Tortonese, R.C. Barett, and C.F. Quate, “Atomic resolution with an atomic force microscope using piezoresistive detection”, Appl. Phys. Lett. 62 (8), 834 (1993).
  • [21] T. Gotszalk, P. Grabiec, and I.W. Rangelow, “Piezoresistive sensors for scanning probe microscopy”, Ultramicroscopy 82 (1– 4), 39 (2000).
  • [22] P. Grabiec, T. Gotszalk, J. Radojewski, K. Edinger, N. Abedinov, and I.W. Rangelow, “SNOM/AFM microprobe integrated with piezoresistive cantilever beam for multifunctional surface analysis”, Microelectr. Eng. 61–62, 981–986 (2002).
  • [23] P. Grabiec, J. Radojewski, M. Zaborowski, K. Domański, T. Schenkel, and I.W. Rangelow, “Batch fabricated scanning nearfield optical microscope/atomic force microscopy microprobe integrated with piezoresistive cantilever beam with highly reproductible focused ion beam micromachined aperture”, J. Vac. Sci. Technol. B 22 (1), 16–21 (2004).
  • [24] J.A. Veerman, A. M. Otter, L. Kuipers, and N.F. van Hulst, “High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling”, Appl. Phys. Lett. 72 (24), 3115–3117 (1998).
  • [25] B. Hecht, B. Sick, U.P. Wild, V. Deckert, R. Zenobi, O.F. Martin, and D.W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications”, J. Chem. Phys. 112 (18), 7761–7774 (2000).
  • [26] J. Radojewski and P. Grabiec, “Combined SNOM/AFM microscopy with micromachined nanoapertures”, Materials Science 21 (3), 319–332 (2003).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0012-0071
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.