PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Methods of fabricating metals for nano-technology

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper gives an introduction to nanostructuring techniques used for industrial fabrication of hulk nanocrystalline metal s - basic materials utilized in shaping nanoscale structures. Nanostructured metals, called nanometals, can be produced by severe plastic deformation (SPD). We give an expert coverage of current achievements in all important SPD methods and present future industry developments and research directions including both batch and continuous processes. In the laboratories of both WUT and DOS we have developed industry standard equipment and machinery for nanometals processing. Utilizing the latest examples from our research, we provide a concise introduction to the field of mass production of nanometals for nanotechnology. Key words: ultra-fine grain structure, severe plastic deformation, ECAP (equal channel angular pressing), grain refinement, aluminium alloys.
Rocznik
Strony
413--423
Opis fizyczny
Bibliogr. 36 poz., 15 rys.
Twórcy
autor
  • Production Engineering Faculty, Warsaw University of Technology, 85 Narbutta St., 02-524 Warsaw, Poland, lolejnik@wip.pw.edu.pl
Bibliografia
  • [1] E.L.Wolf, Nanophysics and Nanotechnology,Wiley-VCH Verlag, Weinheim, 2004.
  • [2] V.M. Segal, V.I. Reznikov, A.E. Drobyshevskiy, and V.I. Kopylov, “Plastic working of metals by simple shear”, Russ. Metall. (Metally) 1, 99–105 (1981).
  • [3] V.M. Segal, V.I. Reznikov, V.I. Kopylov, D.A. Pavlik, and V.F. Malyshev, “Process of structure formation during plastic straining”, in Scientific and Technical Publishing, Minsk, 1994.
  • [4] J. Schiotz and K.W. Jacobsen, “A maximum in the strength of nanocrystalline copper”, Science 301, 1357–1359 (2003).
  • [5] Z. Budrovic, H.Van Swygenhoven, P.M. Derlet, S.Van Petegem, and B. Schmitt, “Plastic deformation with reversible peak broadening in nanocrystalline nickel”, Science 304, 273–276 (2004).
  • [6] H. Hasegawa, S. Komura, A. Utsunomiya, Z. Horita, M. Furukawa, M. Nemoto, and T. G. Langdon, “Thermal stability of ultrafie-grained aluminum in the presence of Mg and Zr additions”, Mat. Sci. Eng. A265, 188–196 (1999).
  • [7] P.J. Apps, J.R. Bowen, and P.B. Prangnell, in Nanomaterials by Severe Plastic Deformation, M. Zehetbauer and R.Z. Valiev (eds), pp. 138–144, Wiley-VCH, Weinheim, 2004.
  • [8] Y.Wang and E. Ma, “Three strategies to achieve uniform tensile deformation in a nanostructured metal”, Acta Mater. 52, 1699–1703 (2004).
  • [9] Prof. S. Erbel – personal communication.
  • [10] W. Chen, D. Ferguson, and H. Ferguson, “Severe plastic techniques”, Acta Metallurgica Sinica 13(1), 242–253 (2000).
  • [11] V.M. Segal, “Materials processing by simple shear”, Mat. Sci. Eng. A197, 157–164 (1995).
  • [12] R.Z. Valiev,: in T.C. Lowe, R.Z. Valiev (eds), Investigations and applications of SPD, pp. 211–229, Kluver Academic Publishers, Norwell, 2000.
  • [13] A. Rosochowski, “Processing metals by severe plastic deformation”, Solid State Phenomena 101–102, 13–22 (2005).
  • [14] T.C. Lowe and R.Z. Valiev, “The use of severe plastic deformation techniques in grain refinement”, JOM 56(10), 64–68 (2004).
  • [15] K.J. Kurzydłowski, “Microstructural refinement and properties of metals processed by severe plastic deformation”, Bull. Pol. Ac.: Tech. 52(4), 301–311 (2004).
  • [16] S. Erbel, “Mechanical properties and structure of extremely strainhardened copper”, Met. Technol. 12, 482–486 (1979).
  • [17] A. Korbel and W. Bochniak, “Refinement and control of the metal structure elements by plastic deformation”, Scripta Mater. 51, 755–759 (2004).
  • [18] E. Litwi´nski, Method and apparatus for producing a refined grain structure, U.S. Patent Appl. No 0004107 A1, (2004).
  • [19] T.C. Lowe and Y.T. Zhu, “Commercialization of nanostructured metals produced by severe plastic deformation processing”, Adv. Eng. Mater. 5(5), 373–378 (2003).
  • [20] G.J. Raab, R.Z. Valiev, T.C. Lowe, and Y.T. Zhu, “Continuous processing of ultrafine grained Al by ECAP-Conform”, Mat. Sci. Eng. 382A, 30–34 (2004).
  • [21] U. Chakkingal, A.B. Suriadi, and P.F. Thomson, “Microstructure development during equal channel angular drawing of Al at room temperature”, Scripta Mater. 39(6), 677–684 (1998).
  • [22] Y. Saito, H. Utsunomiya, and H. Suzuki, “Proposal of novel continuous high straining process – development of conshearing process”, in M. Geiger (ed.), Advanced Technology of Plasticity, vol. III, pp. 2459–2464, Springer, 1999.
  • [23] Y.T. Zhu and T.G. Langdon, “The fundamentals of nanostructured materials processed by severe plastic deformation”, JOM 56(10), 58–63 (2004).
  • [24] S.L. Semiatin, A.A. Salem, and M.J. Saran, “Models for severe plastic deformation by equal-channel angular extrusion”, JOM 56(10), 69–77 (2004).
  • [25] Z. Horita, T. Fujinami, and T.G. Langdon, “The potential for scaling ECAP: effect of sample size on grain refinement and mechanical properties”, Mat. Sci. Eng. A318, 34–41 (2001).
  • [26] V.M. Segal, Apparatus and Method for Deformation Processing of Metals, Ceramics, Plastics and Other Materials, U.S Patent No. 5400633, (1995).
  • [27] G. Stecher and P. Thomson, Improved Angular Channel Processing, Patent Int. Publication No.WO 03/027337 A1, (2003).
  • [28] M.V. Markushev, V.N. Sloboda, and O.A. Kaibyshev, Method for Deformation Processing of Materials and Apparatus for Its Realisation, Russian Patent No. 2146571, (2000).
  • [29] Z.Y. Liu, G.X. Liang, E.D. Wang, and Z.R. Wang, “The effect of cumulative large plastic strain on the structure and properties of a Cu-Zn alloy”, Mat. Sci. Eng. A242, 137–140 (1998).
  • [30] G. Krallics, I.N. Budilov, I.V. Alexandrov, G.I. Raab, V.S. Zhernakov, and R.Z. Valiev, in M. Zehetbauer and R. Z. Valiev (eds), Nanomaterials by Severe Plastic Deformation, pp. 271–277, Wiley-VCH, 2004.
  • [31] T.G. Langdon, M. Furukawa, M. Nemoto, and Z. Horita, JOM 52 (4), 30–33 (2000).
  • [32] A. Rosochowski, L. Olejnik, and M. Richert, “3D-ECAP of square aluminium billets”, ESAFORM 2005 Conference, Cluj-Napoca, Romania, 637–640 (2005).
  • [33] Y. Nishida, S. Kume, and T. Imai, Large Deformation Apparatus, the Deformation Method and the Deformed Metallic Materials, U.S. Patent No. 6209379B1, (2001).
  • [34] O. Akira and M. Masakazu, Method and Device for Manufacturing Metallic Material of Micro-Structure, Japan patent appl. No 2003–019532, (2003).
  • [35] A. Rosochowski, A Method of Treating a Metal Billet, Patent Int. Publication No. WO 2005/039792, (2005).
  • [36] Honeywell’s web site, 25.03.2004 – document: http://www.honeywell.com/sites/docs/doc74476a-fa32358fd6-e0df9bfada07602278603c6cb43673fb.pdf
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0012-0059
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.