PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanoscale computational analysis for an idealized bio-molecular motor

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Molecular motors are nature's nanomachines and are the essential agents of movement that are an integral part of many living organisms. The supramolecular machine, called the nuclear pore complex (NPC), controls the transport of all cellular material between the cytoplasm and the nucleus that occurs naturally in all biological cells. In the presence of appropriate chemical stimuli, the NPC opens or closes, like a gating mechanism, and permits the flow of material into and out of the nucleus. As a first step in understanding the design characteristics of the NPC, nanoscale studies were conducted to understand the transport characteristics of an idealized NPC model using CFD analysis, discrete element transport and coupled fluid-solid analysis. Results of pressure and velocity profi1es obtained from the model s indicate that the fluid density, flexibility of walls and the geometry of the flow passage are important in the design of NPC based nano- and micro-motors.
Rocznik
Strony
405--412
Opis fizyczny
Bibliogr. 28 poz., 12 rys.
Twórcy
autor
autor
autor
  • Department of Mechanical Engineering, Virginia Commonwealth University, Richmond, V A 23284, USA, rmpidaparti@vcu.edu
Bibliografia
  • [1] N. Thomas and R.A. Thornhill, “The physics of biological molecular motors”, J. BioPhysics 386, 253–266 (1998).
  • [2] H.C. Taylor and M.E.J. Holwill, “Axonemal dynein – a natural molecular motor”, J. Nanotechnology 10, 237–243 (1999).
  • [3] C.W. Akey and M. Radmacher, “Architecture of the xenopus nuclear pore complex revealed by three-dimensional cryoelectron microscopy”, J. Cell Biol. 122, 1–19 (1993).
  • [4] N. Pante and U. Aebi, “Towards understanding the 3-D structure of the nuclear pore complex at the molecular level”, Curr. Opin. Struct. Biol. 4, 187–196 (1996).
  • [5] C.W. Akey, “Interactions and structure of the nuclear pore complex revealed by cryo-electron microscopy”, J. Cell Biol. 109, 955–970 (1989).
  • [6] J.A. Hanover, “The nuclear pore at the crossroads”, FASEB J. 4, 187–196 (1992).
  • [7] N. Pante and U. Aebi, “Sequential binding of import ligands to distinct nucleopore regions during their nuclear import, Science 273, 1729–1732 (1996).
  • [8] H.W.Wang and D.E. Clapham, “Conformational changes of the in situ nuclear pore complex”, J. Biophysical 77(1), 241–247 (1999).
  • [9] U.F Greber and L. Gerace, “Depletion of calcium from the lumen of endoplasmic reticulum reversibly inhibits passive diffusion and signal-mediated transport into the nucleus”, J. Cell. Biol. 128, 5–14 (1995).
  • [10] C. Perez-Terzic, J. Pyle, M. Jaconi, L. Stehno-Bittel, and D. Clapham, “Conformational states of the nuclear pore complex induced by depletion of nuclear Ca2+ stores”, Science 273, 1875–1877 (1996).
  • [11] C. Perez-Terzic, A.M. Gacy, R. Bortolon, P.P. Dzeja, M. Puceat, M. Jaconi, F.G. Prendergast, and C.A. Terzic, “Structural plasticity of the cardiac nuclear pore complex in response to regulators of nuclear import”, Circ. Res. 84, 1292–1301 (1999).
  • [12] C. Perez-Terzic, M. Jaconi, and D.E. Clapham, “Nuclear calcium and the regulation of the nuclear pore complex”, BioEssays 19, 787–792 (1997).
  • [13] L. Pemberton, G. Blobel, and J. Rosenblum, “Transport routes through the nuclear pore complex”, Curr. Opin. Cell Biol. 10, 392–399 (1998).
  • [14] T.M. Gant, M.W. Goldberg, and T.D. Allen, “Nuclear envelope and nuclear pore assembly, analysis of assembly intermediates by electron microscopy”, Curr. Opin. Cell Biol. 10 (3), 409–15 (1998).
  • [15] N. Pante and U. Aebi, “Molecular dissection of the nuclear pore complex”, Critical Reviews in Biochemistry and Molecular Biology 31(2), 153–99 (1996).
  • [16] D.D. Newmeyer, “The nuclear pore complex and nucleocytoplasmic transport”, Curr. Opin. Cell Biol. 5(3), 395–407 (1993).
  • [17] T.D. Allen, J.M. Cronshaw, S. Bagley, E. Kiseleva, and M.W. Goldberg, “The nuclear pore complex: mediator of translocation between nucleus and cytoplasm”, J. Science 113, 1651–1659 (2000).
  • [18] M.W. Goldberg and T.D. Allen, “The nuclear pore complex and lamina: three-dimensional structures and interactions determined by FEISEM”, J. Mol. Biol. 257, 848–865 (1996).
  • [19] M.W. Goldberg and T.D. Allen, “Structural and functional organization of the nuclear envelope”, Curr. Opin. Cell Biol. 7, 301–309 (1995).
  • [20] E. Kiseleva, M.W. Goldberg, T.D. Allen, and C.W. Akey, “Active nuclear pore complexes in Chironomus: visualization of transporter configurations related to mRNP export, J. Cell Science 111, 223–236 (1998).
  • [21] P.W. Longest and C. Kleinstreuer, “Comparison of blood particle deposition models for non-paralell flow domains”, J. Biomechanics 36(3), 421–430 (2003).
  • [22] G.E. Karniadakis and A. Beskok, Microflows: Fundamentals and Simulation, Springer Verlag, New York, 2002.
  • [23] M. Gad-el-Hak, The MEMS Handbook, CRC Press, New York, 2002.
  • [24] J. Koo and C. Kleinstreuer, “Liquid flow in microchannels: experimetnal observations and computational analyses of microfluidics effects”, J. Micromech. Microeng. 13, 568–579 (2003).
  • [25] G.M. Mala and D. Li, “Flow characteristics of water in microtubes”, International J. Heat and Fluid Flow 20, 142–148 (1999).
  • [26] P.W. Longest, C. Kleinstreuer, and J.R. Buchanan, “Efficient computation of micro-particle dynamics including wall effects”, Computers & Fluids 33 (4), 577–601 (2004).
  • [27] R. Clift, J.R. Grace, and M.E. Weber, Bubbles, Drops, and Particles, Academic Press, New York, 1978.
  • [28] C. Crowe, M. Sommerfeld, and Y. Tsuji, Multiphase Flows with Drops and Bubbles, CRC Press, Boca Raton, 1998.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0012-0058
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.