PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Formation of bubbles and droplets in microfluidic systems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This mini-review reports the recent advances in the hydrodynamic techniques for formation of bubbles of gas in liquid in microfluidic systems. Systems comprising ducts that have widths of the order of 100 micrometers produce suspensions of bubbles with narrow size distributions. Certain of these systems have the ability to tune the volume fraction of the gaseous phase - over the whole range from zero to one. The rate of flow of the liquids through the devices determines the mechanism of formation of the bubbles - from break-up controlled by the rate of flow of the liquid (at law capillary numbers, and in the presence of strong confinement by the walls of the microchannels), to dynamics dominated by inertial effects (at high Weber numbers). The region of transition between these two regimes exhibits nonlinear behaviours, with period doubling cascades and irregular bubbling as prominent examples. Microfluidic systems provide new and uniquely controlled methods for generation of bubbles, and offer potential applications in micro-tlow chemical processing, synthesis of materials, and fluidic optics.
Rocznik
Strony
361--372
Opis fizyczny
Bibliogr. 99 poz., 6 rys.
Twórcy
autor
  • Institute of Physical Chemistry, Polish Academy of Sciences, 44/52 Kasprzaka St., Ol -224 Warsaw, Poland, garst@ichf.edu.pl
Bibliografia
  • [1] T. Thorsen, R.W. Roberts, F.H. Arnold, and S.R. Quake, “Dynamic pattern formation in a vesicle-generating microfluidic device”, Phys. Rev. Lett. 86, 4163 (2001).
  • [2] A.M. Ganan-Calvo and J.M. Gordillo, “Perfectly monodisperse microbubbling by capillary flow focusing.” Phys. Rev. Lett. 87, 274501 (2001).
  • [3] A.M. Ganan-Calvo, “Perfectly monodisperse microbubbling by capillary flow focusing: An alternate physical description and universal scaling”, Phys. Rev. E 69, 027301 (2004).
  • [4] J. Eggers, “Nonlinear dynamics and breakup of free-surface flows”, Rev. Mod. Phys. 69, 865 (1997).
  • [5] P.J.A. Kenis, R.F. Ismagilov, and G.M. Whitesides, “Microfabrication inside capillaries using multiphase laminar flow patterning”, Science 285, 83 (1999).
  • [6] D.C. Duffy, J.C. McDonald, O.J.A. Schueller, and G.M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)”, Anal. Chem. 70, 4974 (1998).
  • [7] J.C. McDonald, D.C. Duffy, J.R. Anderson, D.T. Chiu, H. Wu, O.J.A. Schueller, and G.M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylosiloxane)”, Electrophoresis 21, 27 (2000).
  • [8] J.W. Hong and S.R. Quake, “Integrated nanoliter systems”, Nat. Biotech. 21, 1179 (2003).
  • [9] S.K.W. Dertinger, X.Y. Jiang, Z.Y. Li, V.N. Murthy, and G.M. Whitesides, “Gradients of substrate-bound laminin orient axonal specification of neurons”, Proc. Natl. Acad. Sci. U. S. A. 99, 12542 (2002).
  • [10] E.M. Luchetta, J.H. Lee, L.A. Fu, N.H. Patel, and R.F. Ismagilov, “Dynamics of Drosphila embryonic patterning network perturbed in space and time using microfluidics”, Nature 434, 1134 (2005).
  • [11] T.A. Thorsen, “Microfluidic tools for high-throughput screening”, BioTechniques 36, 197 (2004).
  • [12] S.K. Sia, V. Linder, B.A. Parviz, A. Siegel, and G.M. Whitesides, “An integraded approach to a portable and low-cost immunoassay for resource-poor settings”, Angew. Chem., Int. Ed. Engl. 43, 498 (2004).
  • [13] P. Angenendt, J. Glokler, Z. Konthur, H. Lehrach, and D.J. Cahill, “3D protein microarrays: Performing multiplex immunoassays on a single chip”, Anal. Chem. 75, 4368 (2003).
  • [14] Z.T. Cygan, J.T. Cabral, K.L. Beers, and E.J. Amis, “Microfluidic platform for the generation of organic-phase microreactors”, Langmuir 21, 3629 (2005).
  • [15] O.A. Basaran, “Small-scale free surface flows with breakup: Drop formation and emerging applications”, AIChE J. 48, 1842 (2002).
  • [16] H. A. Stone, A.D. Stroock, and A. Ajdari, “Engineering flows in small devices: Microfluidics toward a lab-on-a-chip”, Annu. Rev. Fluid Mech. 36, 381 (2004).
  • [17] P. Garstecki, M.J. Fuerstman, H.A. Stone, and G.M. Whitesides, “Formation of droplets and bubbles in microfluidic Tjunction geometries: scaling and mechanism of break-up”, Lab Chip, (to be published).
  • [18] J.D. Tice, A.D. Lyon, and R.F. Ismagilov, “Effects of viscosity on droplet formation and mixing in microfluidic channels”, Anal. Chim. Acta 507, 73 (2004).
  • [19] B. Blackmore, D.Q. Li, and J. Gao, “Detachment of bubbles in slit microchannels by shearing flow”, J. Colloid Interface Sci. 241, 514 (2001).
  • [20] H. Song and R.F. Ismagilov, “Millisecond kinetics on a microfluidic chip using nanoliters of reagents”, J. Am. Chem. Soc. 125, 14613 (2003).
  • [21] C.J. Gerdts, D.E. Sharoyan, and R.F. Ismagilov, “A synthetic reaction network: Chemical amplification using nonequilibrium autocatalytic reactions coupled in time”, J. Am. Chem. Soc. 126, 6327 (2004).
  • [22] B. Zheng, L.S. Roach, and R.F. Ismagilov, “Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets”, J. Am. Chem. Soc. 125, 11170 (2003).
  • [23] B. Zheng, J.D. Tice, L.S. Roach, and R.F. Ismagilov, “Nanoliter droplet-based microfluidic system for evaluating protein crystallization conditions with on-chip diffraction”, Abstr. Pap. Am. Chem. Soc. 228, U533 (2004).
  • [24] D. Dendukuri, K. Tsoi, T.A. Hatton, and P.S. Doyle, “Controlled synthesis of nonspherical microparticles using microfluidics”, Langmuir 21, 2113 (2005).
  • [25] S. Okushima, T. Nisisako, T. Torii, and T. Higuchi, “Controlled production of monodisperse double emulsions by twostep droplet breakup in microfluidic devices”, Langmuir 20, 9905 (2004).
  • [26] A.S. Utada, E. Lorenceau, D.R. Link, P.D. Kaplan, H.A. Stone, and D.A. Weitz, “Monodisperse double emulsions generated from a microcapillary device”, Science 308, 537 (2005).
  • [27] S. Takeuchi, P. Garstecki, D.B. Weibel, and G.M. Whitesides, “An axisymmetric flow-focusing microfluidic device”, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 17, 1067 (2005).
  • [28] S.L. Anna, N. Bontoux, and H.A. Stone, “Formation of dispersions using “flow focusing” in microchannels”, Appl. Phys. Lett. 82, 364 (2003).
  • [29] Q.Y. Xu and M. Nakajima, “The generation of highly monodisperse droplets through the breakup of hydrodynamically focused microthread in a microfluidic device”, Appl. Phys. Lett. 85, 3726 (2004).
  • [30] T. Ward, M. Faivre, M. Abkarian, and H.A. Stone, Microfluidic Flow Focusing: Drop Size and Scaling in Pressure versus Flow-Rate-Driven Fluid Pumping, (to be published).
  • [31] P. Garstecki, I. Gitlin, W. Diluzio, E. Kumacheva, H.A. Stone, and G.M. Whitesides, “Formation of monodisperse bubbles in a microfluidic flow-focusing device”, Appl. Phys. Lett. 85, 2649 (2004).
  • [32] P. Garstecki, H.A. Stone, and G.M. Whitesides, “Mechanism for flow-rate controlled breakup in confined geometries: A route to monodisperse emulsions”, Phys. Rev. Lett. 94, 164501 (2005).
  • [33] J.M. Gordillo, Z.D. Cheng, A.M. Ganan-Calvo, M.Marquez, and D.A. Weitz, “A new device for the generation of microbubbles”, Phys. Fluids 16, 2828 (2004).
  • [34] D.R. Link, S.L. Anna, D.A. Weitz, and H.A. Stone, “Geometrically mediated breakup of drops in microfluidic devices”, Phys. Rev. Lett. 92, 054503 (2004).
  • [35] S. Sugiura, M. Nakajima, S. Iwamoto, and M. Seki, “Interfacial tension driven monodispersed droplet formation from microfabricated channel array”, Langmuir 17, 5562 (2001).
  • [36] I. Kobayashi, X.F. Lou, S. Mukataka, and M. Nakajima, “Preparation of monodisperse water-in-oil-in-water emulsions using microfluidization and straight-through microchannel emulsification”, J. Am. Oil Chem. Soc. 82, 65 (2005).
  • [37] H.J. Liu, M. Nakajima, and T. Kimura, “Production of monodispersed water-in-oil emulsions using polymer microchannels”, Journal of the American Oil Chemists Society 81, 705 (2004).
  • [38] C. P. Steinert, I. Goutier, O. Gutmann, H. Sandmaier, M. Daub, B. de Heij, and R. Zengerle, “A highly parallel picoliter dispenser with an integrated, novel capillary channel structure”, Sens. Actuators A 116, 171 (2004).
  • [39] S.Q. Xu, Z.H. Nie, M. Seo, P. Lewis, E. Kumacheva, H.A. Stone, P. Garstecki, D.B. Weibel, I. Gitlin, and G.M. Whitesides, “Generation of monodisperse particles by using microfluidics: Control over size, shape, and composition”, Angew. Chem., Int. Ed. Engl. 44, 724 (2005).
  • [40] W.J. Jeong, J.Y. Kim, J. Choo, E.K. Lee, C.S. Han, D.J. Beebe, G.H. Seong, and S.H. Lee, “Continuous fabrication of biocatalyst immobilized microparticles using photopolymerization and immiscible liquids in microfluidic systems”, Langmuir 21, 3738 (2005).
  • [41] T. Nisisako, T. Torii, and T. Higuchi, “Novel microreactors for functional polymer beads”, Chem. Eng. J. 101, 23 (2004).
  • [42] W.J. Jeong, J.Y. Kim, S. Kim, S.H. Lee, G. Mensing, and D.J. Beebe, “Hydrodynamic microfabrication via “on the fly” photopolymerization of microscale fibers and tubes”, Lab Chip 4, 576 (2004).
  • [43] Z.H. Nie, S.Q. Xu, M. Seo, P.C. Lewis, and E. Kumacheva, “Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors”, J. Am. Chem. Soc. 127, 8058 (2005).
  • [44] L. Martin-Banderas, M. Flores-Mosquera, P. Riesco-Chueca, A. Rodriguez-Gil, A. Cebolla, S. Chavez, and A.M. Ganan- Calvo, “Flow focusing: A versatile technology to produce sizecontrolled and specific-morphology microparticles”, Small 1, 688 (2005).
  • [45] S. Sugiura, T. Oda, Y. Izumida, Y. Aoyagi, M. Satake, A. Ochiai, N. Ohkohchi, and M. Nakajima, “Size control of calcium alginate beads containing living cells using micro-nozzle array”, Biomaterials 26, 3327 (2005).
  • [46] M. Seo, Z.H. Nie, S.Q. Xu, P.C. Lewis, and E. Kumacheva, “Microfluidics: From dynamic lattices to periodic arrays of polymer disks”, Langmuir 21, 4773 (2005).
  • [47] D. Rudhardt, A. Fernandez-Nieves, D.R. Link, and D.A.Weitz, “Phase switching of ordered arrays of liquid crystal emulsions”, Appl. Phys. Lett. 82, 2610 (2003).
  • [48] D. Belder, “Microfluidics with droplets”, Angew. Chem., Int. Ed. Engl. 2005, 23 (2005).
  • [49] K. Hosokawa, T. Fujii, and I. Endo, “Handling of picoliter liquid samples in a poly(dimethylsiloxane)-based microfluidic device”, Anal. Chem. 71, 4781 (1999).
  • [50] B. Zheng and R.F. Ismagilov, “A microfluidic approach for screening submicroliter volumes against multiple reagents by using preformed arrays of nanoliter plugs in a three-phase liquid/liquid/gas flow”, Angew. Chem., Int. Ed. Engl. 44, 2520 (2005).
  • [51] Y.C. Tan, J.S. Fisher, A.I. Lee, V. Cristini, and A.P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting”, Lab Chip 4, 292 (2004).
  • [52] H. Song, M.R. Bringer, J.D. Tice, C.J. Gerdts, and R.F. Ismagilov, “Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels”, Appl. Phys. Lett. 83, 4664 (2003).
  • [53] M.Y. He, J.S. Edgar, G.D.M. Jeffries, R.M. Lorenz, J.P. Shelby, and D.T. Chiu, “Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets”, Anal. Chem. 77, 1539 (2005).
  • [54] Y. Fouillet and J.L. Achard, “Digital microfluidic and biotechnology”, C.R. l’Academie. Sci., Ser. II Univers 5, 577 (2004).
  • [55] H. Ren, R.B. Fair, and M.G. Pollack, “Automated on-chip droplet dispensing with volume control by electro-wetting actuation and capacitance metering”, Sensors and Actuators BChemical 98, 319 (2004).
  • [56] S.K. Cho, H.J. Moon, and C.J. Kim, “Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits”, J. MEMS 12, 70 (2003).
  • [57] V. Srinivasan, V.K. Pamula, and R.B. Fair, “An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids”, Lab Chip 4, 310 (2004).
  • [58] D.E. Kataoka and S.M. Troian, “Patterning liquid flow on the microscopic scale”, Nature 402, 794 (1999).
  • [59] L.R. Snyder and H.J. Adler, “Dispersion in segmented flow through glass tubing in continuous-flow analysis – nonideal model”, Anal. Chem. 48, 1022 (1976).
  • [60] L.R. Snyder and H.J. Adler, “Dispersion in segmented flow through glass tubing in continuous-flow analysis – ideal model”, Anal. Chem. 48, 1017 (1976).
  • [61] S.E. Burns, S. Yiacoumi, and C. Tsouris, “Microbubble generation for environmental and industrial separations”, Sep. Purif. Tech. 11, 221 (1997).
  • [62] A. Berthod, M.A. Rodriguez, M. Girod, and D.W. Armstrong, “Use of microbubbles in capillary electrophoresis for sample segregation when focusing microbial samples”, J. Sep. Sci. 25, 988 (2002).
  • [63] A. Grodrian, J. Metze, T. Henkel, K. Martin, M. Roth, and J.M. Kohler, “Segmented flow generation by chip reactors for highly parallelized cell cultivation”, Biosens. Bioelectr. 19, 1421 (2004).
  • [64] A. Gunther, S.A. Khan, M. Thalmann, F. Trachsel, and K.F. Jensen, “Transport and reaction in microscale segmented gasliquid flow”, Lab Chip 4, 278 (2004).
  • [65] A. Gunther, M. Jhunjhunwala, M. Thalmann, M.A. Schmidt, and K.F. Jensen, “Micromixing of miscible liquids in segmented gas-liquid flow”, Langmuir 21, 1547 (2005).
  • [66] P. Garstecki, M.A. Fischbach, and G.M. Whitesides, “Design for mixing using bubbles in branched microfluidic channels”, Appl. Phys. Lett. 86, 244108 (2005).
  • [67] J.R. Burns and C. Ramshaw, “The intensification of rapid reactions in multiphase systems using slug flow in capillaries”, Lab Chip 1, 10 (2001).
  • [68] G.I. Taylor, “Deposition of a viscous fluid on the wall of a tube”, J. Fluid Mech. 10, 161 (1961).
  • [69] S.A. Khan, A. Gunther, M.A. Schmidt, and K.F. Jensen, “Microfluidic synthesis of colloidal silica”, Langmuir 20, 8604 (2004).
  • [70] P. Garstecki, M.J. Fuerstman, and G.M. Whitesides, “Nonlinear dynamics of a flow-focusing bubble generator: An inverted dripping faucet”, Phys. Rev. Lett. 94, 234502 (2005).
  • [71] R. Dreyfus, P. Tabeling, and H. Willaime, “Ordered and disordered patterns in two-phase flows in microchannels”, Phys. Rev. Lett. 90, 144505 (2003).
  • [72] K. Brakke, http://www.susqu.edu/facstff/b/brakke/evolver
  • [73] H.A. Stone, “On lubrication flows in geometries with zero local curvature”, Chem. Eng. Sci. 60, 4838 (2005).
  • [74] I. Cohen and S.R. Nagel, “Scaling at the selective withdrawal transition through a tube suspended above the fluid surface”, Phys. Rev. Lett. 88, 074501 (2002).
  • [75] I. Cohen, H. Li, J.L. Hougland, M. Mrksich, and S.R. Nagel, “Using selective withdrawal to coat microparticles.” Science 292, 265 (2001).
  • [76] T. Cubaud and C.M. Ho, “Transport of bubbles in square microchannels”, Phys. Fluids 16, 4575 (2004).
  • [77] M. Kawaji and P.M.Y. Chung, “Adiabatic gas-liquid flow in microchannels”, Microscale Thermophys. Eng. 8, 239 (2004).
  • [78] K.R. Tuson, “Single exposure photography of a high speed event”, Brit. J. Appl. Phys. 6, 99 (1955).
  • [79] F.W. Helsby and K.R. Tuson, Research 8, 270 (1955).
  • [80] D.J. Tritton and C. Egdell, “Chaotic bubbling”, Phys. Fluids 5, 503 (1993).
  • [81] A. Tufaile and J.C. Sartorelli, “Henon-like attractor in air bubble formation”, Phys. Lett. A 275, 211 (2000).
  • [82] A. Tufaile and J.C. Sartorelli, “Chaotic behavior in bubble formation dynamics”, Physica A 275, 336 (2000).
  • [83] L.J. Mittoni, M.P. Schwarz, and R.D. Lanauze, “Deterministic chaos in the gas inlet pressure of gas-liquid bubbling system”, Phys. Fluids 7, 891 (1995).
  • [84] M.Y. Liu, Z.D. Hu, and J.H. Li, “Multi-scale characteristics of chaos behavior in gas-liquid bubble columns”, Chem. Eng. Commun. 191, 1003 (2004).
  • [85] K. Kiyono, T. Katsuyama, T. Masunaga, and N. Fuchikami, “Picture of the low-dimensional structure in chaotic dripping faucets”, Phys. Lett. A 320, 47 (2003).
  • [86] B. Ambravaneswaran, S.D. Phillips, and O.A. Basaran, “Theoretical analysis of a dripping faucet”, Phys. Rev. Lett. 85, 5332 (2000).
  • [87] B. Ambravaneswaran, H.J. Subramani, S.D. Phillips, and O.A. Basaran, “Dripping-jetting transitions in a dripping faucet”, Phys. Rev. Lett. 93, 034501 (2004).
  • [88] P. Coullet, L. Mahadevan, and C. Riera, “Return map for the chaotic dripping faucet”, Prog. Theor. Phys. Suppl., 507 (2000).
  • [89] P. Coullet, L. Mahadevan, and C. Riera, “Hydrodynamical models for the chaotic dripping faucet”, J. Fluid Mech. 526, 1 (2005).
  • [90] A. dInnocenzo and L. Renna, “Analytical solution of the dripping faucet dynamics”, Phys. Lett. A 220, 75 (1996).
  • [91] P.M.C. Deoliveira and T.J.P. Penna, “Simulating the Complex Behavior of a Leaky Faucet”, J. Stat. Phys. 73, 789 (1993).
  • [92] P.J.A. Frinking, A. Bouakaz, J. Kirkhorn, F.J. Ten Cate, and N. de Jong, “Ultrasound contrast imaging: Current and new potential methods”, Ultrasound in Medicine and Biology 26, 965 (2000).
  • [93] E. Stride and N. Saffari, “Microbubble ultrasound contrast agents: a review”, Proc. Inst. Mech. Eng., IMechE Conf. 217, 429 (2003).
  • [94] M.R. Bailey, V.A. Khokhlova, O.A. Sapozhnikov, S.G. Kargl, and L.A. Crum, “Physical mechanisms of the therapeutic effect of ultrasound – (A review)”, Acoust. Phys. 49, 369 (2003).
  • [95] A. M. Kraynik, “Foam structure: From soap froth to solid foams”, Mater. Res. Soc. Bull. 28, 275 (2003).
  • [96] R.H. Liu, R. Lenigk, and P. Grodzinski, “Acoustic micromixer for enhancement of DNA biochip systems”, J. Microlith. Microfab. Microsystems 2, 178 (2003).
  • [97] P. Marmottant and S. Hilgenfeldt, “Controlled vesicle deformation and lysis by single oscillating bubbles”, Nature 423, 153 (2003).
  • [98] S. Hutzler, D. Weaire, F. Elias, and E. Janiaud, “Juggling with bubbles in cylindrical ferrofluid foams”, Philos. Mag. Lett. 82, 297 (2002).
  • [99] W. Drenckhan, S.J. Cox, G. Delaney, H. Holste, D. Weaire, and N. Kern, “Rheology of ordered foams – on the way to discrete microfluidics”, Colloids Surf. A 263, 52 (2005).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0012-0054
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.