PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical simulation of microchannel network with complex geometry

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of a numerical study devoted to the hydraulic properties of a network of parallel triangular microchannels (hydraulic diameter Dh = 110 [mi]m). Previous experimental investigations had revealed that pressure drop through the microchannels system dramatically increases for the Reynolds number exceeding value of 10. The disagreement of the experimental findings with the estimations of flow resistance based on the assumption of fully developed flow were suspected to result tram the so-called scale effect. Numerical simulations were performed by using the classical system of flow equations (continuity and Navier-Stokes equations) in order to explain the observed discrepancies. The calculations showed a very good agreement with the experimental results proving that there is no scale effect for !he rnicrochannels considered, i.e. the relevance of the constitutive flow model applied was confirmed. It was also clearly indicated that the excessive pressure losses in the high Reynolds number range are due to the secondary flows and separations appearing in several regions of the microchannel system.
Rocznik
Strony
351--359
Opis fizyczny
Bibliogr. 15 poz. , 20 rys.
Twórcy
autor
autor
  • Institute ofThermal Machinery, Częstochowa University of Technology, 21 Armii Krajowej Ave, 42-200 Częstochowa, Poland, darek@imc.pcz.czest.pl
Bibliografia
  • [1] R. Mahajan, R. Nair, V. Wakharkar, J.Swan, J. Tang, and G. Vandentop, “Emerging directions for packaging technologies”, Intel Technology Journal Q2 (06), (2002).
  • [2] http://www.mie.utoronto.ca/staff/profiles/dli/micheatsink.htm
  • [3] P. Wu and W.A. Little, “Measurement of friction factors for the flow of gases in very fine channels used for microminiature joule-thomson refrigerators”, Cryogenics 23, 273–277 (1983).
  • [4] P. Wu and W.A. Little, “Measurement of the heat transfer characteristics of gas flow in fine channel heat exchangers used for microminiature refrigerators”, Cryogenics 24, 415–420 (1984).
  • [5] W. Qu, M.Gh. Mala, and L. Dongqing, “Pressure-driven water flows in trapezoidal silicon microchannels”, Int. J. of Heat and Mass Transfer 43, 353–364 (2000).
  • [6] R. Baviere, F. Ayela, S. Le Person, and M. Favre-Marinet; “Experimental characterization of water flow through smooth rectangular microchannels”, Phys. of Fluids 17, 9 (2005).
  • [7] X.F. Peng, G.P. Peterson, and B.X. Wang, “Frictional flow characteristics of water flowing through rectangular microchannels”, Experimental Heat Transfer 7(4), 249–264 (1994).
  • [8] X.F. Peng, H.Y. Hu, and B.X. Wang, “Flow boiling through VShape microchannels”, Experimental Heat Transfer 11(1), 87–100 (1998).
  • [9] N. Mazellier, “Etude experimentale d’ecoulements liquides en microcanaux”, Training Report, Institut National Polytechnique de Grenoble, 2002.
  • [10] A. Bejan, Convection Heat Transfer, John Wiley & Sons, New York, USA, 1995.
  • [11] M. Niklas, “Numerical modeling of flow in microchannel”, MSc Thesis, Cz˛estochowa University of Technology, 2002.
  • [12] M. Niklas and M. Favre-Marinet, “Numerical modeling of flow in microchannel”, Turbulence 8(9), (2002).
  • [13] M. Niklas and M. Favre-Marinet, “Pressure losses in a network of triangular microchannels”, Proceedings of the First International Conference on Microchannels and Minichannels, pp. 335–342, ed.: S.G. Kandlikar, ASME, 2003.
  • [14] M. Niklas and M. Favre-Marinet, “An experimental study and numerical modeling of the flow in a network of microchannels”, Heat Transfer Engineering 26 (8), 15–23 (2005).
  • [15] www.thermacore.com
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0012-0053
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.