PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Roughness effects at microscale - reassessing Nikuradse's experiments on liquid flow in rough tubes

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The topic of incompressible fluid flow in rough channels is of practical interest in many diverse applications. It also forms the basis of our understanding of fluid-wall interactions, turbulent eddy generation, and their effect on the frictional pressure losses. Although this topic is also of fundamental interest, the work in this area is entirely guided by the experimental work of earlier investigators [1-6]. The works by Nikuradse [4] and Colebrook [5] constitute a major milestone from which useful empirical models are derived. As we approach the microscale, Nikuradse's experimental work again is brought to focus, perhaps this time to gain an insight into the mechanisms affecting fluid-wall interaction in rough channels. In this paper, Nikuradse's work is revisited in light of the recent experimental work on roughness effects in microscale flow geometries.
Słowa kluczowe
Rocznik
Strony
343--349
Opis fizyczny
Bibliogr. 46 poz., 6 rys.
Twórcy
  • Mechanical Engineering Department, Rochester Institute of Technology, Rochester, NY, USA, sgkeme@rit.edu
Bibliografia
  • [1] H. Darcy, Recherches Experimentales Relatives au Mouvement de L’Eau dans les Tuyaux, Mallet-Bachelier, Paris, France, 1857.
  • [2] J.T. Fanning, A Practical Treatise on Hydraulic and Water Supply Engineering, Van Nostrand, New York, 1877.
  • [3] L. Schiller, Rohrwinderstand bei hohlen Reynoldsschen Zahlen. Vortrage aus dem Gebiete der Aerodynamik und verwandter Gebiete, Aachen 1920, herausgegeben von A. Gilles, L. Hopf und Th. v. Karman, Berlin, J. Springer, 1930.
  • [4] J. Nikuradse, “Laws of flow in rough pipes.” NACA Tech. Mem. 1292 (1937).
  • [5] F.C. Colebrook, “Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws”, J. Inst. Civ. Eng., Lond. 11, 133–156 (1939).
  • [6] L.F. Moody, “Friction factors for pipe flow”, ASME Trans. 66, 671–683 (1944).
  • [7] V. Mises, Elemente der Techn. Hydromechanik, Leipzig, 1914.
  • [8] A. van Rij, B.J. Belnap, and P.M. Ligrani, “Analysis and experiments on three-dimensional, irregular surface roughness”, Journal of Fluids Engineering 124(3), 671–677 (2002).
  • [9] J. Harley, H. Bau, J.N Zemel, and V. Dominko, “Fluid flow in micron and sub-micron size channels”, IEEE Transactions THO249–3, 25–28 (1989).
  • [10] J. Pfahler, J. Harley, H.H. Bau, and J. Zemel, “Liquid and gas transport in small channels”, Microstructures, Sensors, and Actuators 19, 149–157 (1990).
  • [11] J. Pfahler, J. Harley, and H.H. Zemel, “Gas and liquid flow in small channels”, Microstructures, Sensors, and Actuators 32, 49–60 (1991).
  • [12] A.B. Duncan and G.P. Peterson, “Review of microscale heat transfer”, Journal of Applied Mechanics Review 47, 397–428 (1994).
  • [13] M. Gad-el-Hak, “The fluid mechanics of microdevices”, Journal of Fluids Engineering 121, 7–33 (1999).
  • [14] C.B Sobhan and S.V. Garimella, “A comparative analysis of studies on heat transfer and fluid flow in microchannels”, Microscale Thermophysical Engineering 5 (4), 293–311 (2001).
  • [15] I. Papautsky and T. Ameel, “A review of laminar single-phase flow in microchannels”, ASME, Proceedings of Int. Mech. Eng Congress Expos Proc (IMECE) 2, 3067–3075 (2001).
  • [16] N.T. Obot, “Toward a better understanding of friction and heat/mass transfer in microchannels – a literature review”, Microscale Thermophysical Engineering 6, 155–173 (2002).
  • [17] Z. Guo and Z. Li, “Size effect of microscale single-phase flow and heat transfer”, International Journal of Heat and Mass Transfer 46, 149–159 (2003).
  • [18] S.G. Kandlikar and W.J. Grande, “Evolution of microchannel flow passages – thermohydraulic performance and fabrication technology”, Heat Transfer Engineering 24 (1), 3–17 (2003).
  • [19] P. Shen, S.K. Aliabadi, and J. Abedi, “A review of singlephase liquid flow and heat transfer in microchannels”, Second International Conference on Microchannels and Minichannels, Rochester, 213–220 (2004).
  • [20] M. Gad-el-Hak, “Differences between liquid and gad flows at the microscale”, Heat Transfer Enginering 27(4), (2006).
  • [21] M.E.SteinkeandS.G.Kandlikar,“Single-phaseliquidfrictionfactors in microchannels”, Heat Transfer Enginering 27(4), (2006).
  • [22] X. Jiang, Y. Huang, and C.Y Liu, “Laminar flow through microchannels used for microscale cooling systems”, IEEE CPMT Electronic Packaging Technology Conference, 119–122 (1997).
  • [23] B. Xu, K.T. Ooi, N.T. Wong, and W.K. Choi, “Experimental investigation of flow friction for liquid flow in microchannels”, International Communication in Heat and Mass Transfer 27, 1165–1176 (2000).
  • [24] P.Y. Chung, M. Kawaji, and A. Kawahara, “Characteristics of single-phase flow in microchannels”, ASME Fluids Engineering Division Summer Meeting FEDSM2002-31211, 1219–1227 (2002).
  • [25] G. Celata, M. Cumo, M. Guglielmi, and G. Zummo, “Experimental investigation of hydraulic and single phase heat transfer in 0.130 mm capillary tube”, Microscale Thermophysical Engineering 6, 85–97 (2002).
  • [26] J.D. Judy, D. Maynes, and B.W. Webb, “Characterization of frictional pressure drop for liquid flows through microchannels”, International Journal of Heat and Mass Transfer 45, 3477–3489 (2002).
  • [27] Z. Li, D. Du, and Z.Z Guo, “Experimental study on flow characteristics of liquid in circular microtubes”, Microscale Thermophysical Engineering 7 (3), 253–265 (2003).
  • [28] X. Tu and P. Hrnjak, “Experimental investigation of singlephase pressure drop through rectangular microchannels”, First International Conference on Microchannels and Minichannels, 257–267 (2003).
  • [29] R. Baviere, F. Ayela, S. Le Person, and M. Favre-Marinet, “An experimental study of water flow in smooth and rough rectangular microchannels”, Second International Conference on Microchannels and Minichannels, 221–228 (2004).
  • [30] X.F. Peng, G.P Peterson, and B.X. Wang, “Frictional flow characteristics of water flowing through rectangular microchannels”, Experimental Heat Transfer 7, 249–264 (1994).
  • [31] G.M Mala and D. Li, “Flow characteristics of water in microtubes”, International Journal of Heat and Fluid Flow 20, 142–148 (1999).
  • [32] D. Pfund, D. Rector, A. Shekariz, A. Popescu, and J. Welty, “Pressure drop measurement in a microchannel”, AIChE Journal 46 (8), 1496–1507 (2000).
  • [33] W. Qu, G.M Mala, and D. Li, “Pressure-driven water flows in trapezoidal silicon microchannels”, International Journal of Heat and Mass Transfer 43, 353–364 (2000).
  • [34] S.G. Kandlikar, S. Joshi, and S. Tian, “Effect of surface roughness on heat transfer and fluid flow characteristics at low Reynolds numbers in small diameter tubes”, Heat Transfer Engineering 24 (3), (2003).
  • [35] H.Y. Wu and P. Cheng, “An experimental study of convective heat transfer in silicon microchannels with different surface conditions”, International Journal of Heat and Mass Transfer 46, 2547–2556 (2003).
  • [36] G.P. Celata, M. Cumo, S. McPhail, and G. Zummo, “Hydrodynamic behavior and influence of channel wall roughness and hydrophobicity in microchannels”, Second International Conference on Microchannels and Minichannels ICMM2004-2340 (24–25), 237–244 (2004).
  • [37] M. Bahrami, M.M. Yovanovich, and J.R. Cullham, “Pressure drop of fully-developed flow in rough microtubes”, Third International Conference on Microchannels and Minichannels ICCMM 2005-75108, (2005).
  • [38] S.G. Kandlikar, D. Schmitt, A.L. Carrano, and J.B Taylor, “Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels”, Physics of Fluids 17 (10), (2005).
  • [39] D.J. Schmitt and S.G. Kandlikar, “Effects of repeating microstructures on pressure drop in rectangular minichannels”, Third International Conference on Microchannels and Minichannels ICCMM 2005-75108, (2005).
  • [40] R.L .Webb, E.R.G. Eckert, and R. J. Goldstein, “Heat transfer and friction in tubes with repeated-rib roughness”, Int. J. Heat and Mass Transfer 14, 601–617 (1971).
  • [41] J.B. Taylor, A.L. Carrano, and S.G. Kandlikar, “Characterization of the effect of surface roughness and texture on fluid flow: past, present, and future.” Third International Conference on Microchannels and Minichannels ICCMM 2005-75108, (2005).
  • [42] I.E. Idelchick, Handbook of Hydraulic Resistance, Hemisphere Publishing Corporation, 1986.
  • [43] S.G. Kandlikar, “Single-phase flow in microchannels and minichannels”, in: Heat Transfer and Fluid Flow in Minichannels and Microchannels, Kandlikar, Elsevier Publications, 2005.
  • [44] Y. Hu, C. Werner, and D. Li, “Influence of three-dimensional roughness on pressure-driven flow through microchannels”, Journal of Fluids Engineering 125, 871–879 (2003).
  • [45] C. Kleinstreuer and J. Koo, , “Computational analysis of wall roughness effects for liquid flow in micro-conduits”, Journal of Fluids Engineering 126, 1–9 (2004).
  • [46] A.S Rawool, S.K. Mitra, A. Agrawal, and S.G. Kandlikar, “Numerical simulation of flow through microchannels in bipolar plate”, Third International Conference on Microchannels and Minichannels ICCMM 2005-75108, (2005).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0012-0052
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.