PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Discussion of recent developments in hybrid atomistic-continuum methods for multiscale hydrodynamics

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We discuss recent progress in hybrid atomistic-continuum methods with particular emphasis on developments in boundary condition imposition in molecular simulations, an essential ingredient of hybrid methods. Both Dirichlet (state variable) and flux boundary conditions are discussed. We also briefly review various coupling approaches and discuss the effects of compressibility and molecular fluctuations on the choice of coupling method. Common elements between hybrid methods and related multiscale simulation approaches are also briefly discussed.
Rocznik
Strony
335--342
Opis fizyczny
Bibliogr. 40 poz., 2 rys.
Twórcy
  • Mechanical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA, ngh@mit.edu
Bibliografia
  • [1] H.S. Wijesinghe and N.G. Hadjiconstantinou, “Discussion of hybrid atomistic-continuum methods for multiscale hydrodynamics”, International Journal for Multiscale Computational Engineering 3, 189–202 (2004).
  • [2] P. Wesseling, Principles of Computational Fluid Dynamics, Springer, 2001.
  • [3] M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids, Oxford Science Publications, 1987.
  • [4] G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford, 1994.
  • [5] F.J. Alexander and A.L. Garcia, “The direct simulation Monte Carlo method”, Computers in Physics 11, 588–593 (1997).
  • [6] N.G. Hadjiconstantinou, “Hybrid atomistic-continuum formulations and the moving contact-line problem”, Journal of Computational Physics 154, 245–265, (1999).
  • [7] X. Nie, S. Chen and M.O. Robbins, “Hybrid continuumatomisitc simulation of singular corner flow”, Physics of Fluids 16, 3579–3591 (2004).
  • [8] P.L. Lions “On the Schwarz alternating aethod. I.”, First International Symposium on Domain Decomposition Methods for Partial Differential Equations, eds. R. Glowinski, G. Golub, G. Meurant and J. Periaux, SIAM, Philadelphia, 1–42 (1988).
  • [9] M. Moseler and U. Landman, “Formation, stability, and breakup of nanojets”, Science 289, 1165–1169 (2000).
  • [10] M.W. Tysanner and A.L. Garcia, “Non-equilibrium behaviour of equilibrium reservoirs in molecular simulations”, International Journal for Numerical Methods in Fluids 48, 1337–1349 (2005).
  • [11] N.G. Hadjiconstantinou, A.L. Garcia, M.Z. Bazant, and G. He, “Statistical error in particle simulations of hydrodynamic phenomena,” Journal of Computational Physics 187, 274–297 (2003).
  • [12] T.U. Werder, “Multiscale simulations of carbon nanotubes in aqueous environments”, Ph.D. Thesis, Swiss Federal Institute of Technology, Zurich, 2005.
  • [13] H.S. Wijesinghe, R. Hornung, A.L. Garcia, and N.G. Hadjiconstantinou, “Three-dimensional hybrid continuum-atomistic simulations for multiscale hydrodynamics”, Journal of Fluids Engineering 126, 768–777 (2004).
  • [14] L.L. Baker and N.G. Hadjiconstantinou, “Variance reduction for Monte Carlo solutions of the Boltzmann equation”, Physics of Fluids 17, Art. no. 051703 (2005).
  • [15] K. Kadau, T.C. Germann, N.G. Hadjiconstantinou, P.S. Lomdahl, G. Dimonte, B.L. Holian, and B.J. Alder, “Nanohydrodynamics simulations: an atomistic view of the Rayleigh-Taylor instability”, Proc. of the National Academy of Sciences 101, 5851–5855 (2004).
  • [16] F.J. Alexander, A.L. Garcia, and D. Tartakovsky, “Algorithm refinement for stochastic partial differential equations: I. Linear diffusion”, Journal of Computational Physics 182, 47–66 (2002).
  • [17] F.J. Alexander, A.L. Garcia, and D. Tartakovsky, “Algorithm refinement for stochastic partial diffential equations: II. Correlated systems”, Journal of Computational Physics 207, 769–781 (2005).
  • [18] L.D. Landau and E.M. Lifshitz, Statistical Mechanics, Part 2, Pergamon Press, Oxford, 1980.
  • [19] D.C. Wadsworth and D.A. Erwin, “One-dimensional hybrid continuum/particle simulation approach for rarefied hypersonic flows”, AIAA Paper 90–1690 (1990).
  • [20] D.C. Wadsworth and D.A. Erwin, “Two-dimensional hybrid continuum/particle simulation approach for rarefied hypersonic flows”, AIAA Paper 92–2975, 1992.
  • [21] R. Roveda, D.B. Goldstein, and P.L. Varghese, “Hybrid Euler/direct simulation Monte Carlo calculation of unsteady slit flow”, Journal of Spacecraft and Rockets 37, 753–760 (2000).
  • [22] A.L. Garcia, J.B. Bell, W.Y Crutchfield, and B.J. Alder, “Adaptive mesh and algorithm refinement using direct simulation Monte Carlo”, Journal of Computational Physics 54, 134–155 (1999).
  • [23] N.G. Hadjiconstantinou and A.T. Patera, “Heterogeneous atomistic-continuum representations for dense fluid systems”, International Journal of Modern Physics C 8, 967–976 (1997).
  • [24] M. Fortin and R. Aboulaich, “Schwarz’s decomposition method for incompressible flow problems”, First International Symposium on Domain Decomposition Methods for Partial Differential Equations, eds. R. Glowinski, G. Golub, G. Meurant and J. Periaux, SIAM, Philadelphia, 333–349 (1988).
  • [25] O. Aktas and N.R. Aluru, “A combined continuum/DSMC technique for multiscale analysis of microfluidic filters”, Journal of Computational Physics 178, 342–372 (2002).
  • [26] L.L. Baker and N.G. Hadjiconstantinou, “Implicit hybrid simulation framework for steady-state dilute gas flows”, International Journal for Multiscale Computational Engineering 3, 49–58 (2005).
  • [27] I.G. Kevrekidis, C.W. Gear, J.M. Hyman, P.G. Kevrekidis, O. Runborg, and C. Theodoropoulos, “Equation-free, coarsegrained multiscale computation: enabling microscopic simulators to perform system-level analysis”, Communications in Mathematical Sciences 1, 715–762 (2003).
  • [28] S.T. O’Connell and P.A. Thompson, “Molecular dynamicscontinuum hybrid computations: a tool for studying complex fluid flows”, Physical Review E 52, R5792–R5795 (1995).
  • [29] T.U. Werder, J.H. Walther and P. Koumoutsakos, “Hybrid atomistic-continuum method for the simulation of dense fluid flows”, Journal of Computational Physics 205, 373–390 (2005).
  • [30] S. Chapman and T.G. Cowling, The Mathematical Theory of Non-uniform Gases, Cambridge University Press, 1970.
  • [31] H.S. Wijesinghe, “Hybrid atomistic-continuum formulations for gaseous flows”, Ph.D. Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 2003.
  • [32] A.L. Garcia and B.J. Alder, “Generation of the Chapman-Enskog distribution”, Journal of Computational Physics 140, 66–70 (1998).
  • [33] J. Li, D. Liao, and S. Yip, “Nearly exact solution for coupled continuum/MD fluid simulation”, Journal of Computer-Aided Materials Design 6, 95–102 (1999).
  • [34] R. Delgado–Buscalioni, E.G. Flekkoy, and P.V. Coveney, “Fluctuations and continuity in particle-continuum hybrid simulations of unsteady flows based on flux-exchange”, Europhysics Letters 69, 959–965 (2005).
  • [35] E.G. Flekkoy, G.Wagner, and J. Feder, “Hybrid model for combined particle and continuum dynamics”, Europhysics Letters 52, 271–276 (2000).
  • [36] R. Delgado–Buscalioni and P.V. Coveney, “Continuum–particle hybrid coupling for mass, momentum and energy transfers in unsteady fluid flow”, Physical Review E 67, (article No) 046704 (2003).
  • [37] E.G. Flekkoy, R. Delgado–Buscalioni, and P.V. Coveney, “Flux boundary condtions in particle simulations”, Physical Review E 72, (article No) 026703 (2005).
  • [38] C.W. Gear and I.G. Kevrekidis, “Constraint-defined manifolds: a legacy-code approach to low-dimensional computations”, submitted to Journal on Scientific Computing; (can be found as physics/0312142 at arXiv.org).
  • [39] G. Samaey, D. Roose and I.G. Kevrekidis, “The gap-tooth scheme for homogenization problems”, Multiscale Modeling and Simulation 4, 278–306 (2005).
  • [40] P. Espanol, “Hydrodynamics from dissipative particle dynamics”, Physical Review E 52, 1734–1742 (1995).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0012-0051
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.