PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sol-gel technology for biomedical engineering

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sol-gel derived silica possess many promising features, including low-temperature preparation procedure, porosity, chemical and physical stability. Applications exploiting porous materials to encapsulate sensor molecules, enzymes and many other compounds, are developing rapidly. In this paper some potential applications, with emphasis on biomedical and environmental ones, are reviewed. The material preparation procedure is described and practical remarks on silica-based sol-gels are included. It is reported that sol-gels with entrapped various molecules may be used in construction of implants and coatings with bioactive properties. It is shown how to exploit the sol-gel production route for construction of sol-gel coated fiberoptic applicators for lasertherapy. The applications of bioactive materials are discussed, as well. 11 is demonstrated that it is possible to immobilize photosensitive compounds in sol-gel matrix without loosing their photoactivity. Some examples of sol-gel based biosensors are demonstrated, as well, showing their potential for detecting various gases, toxic substances, acidity, humidity, enzymes and biologically active agents.
Rocznik
Strony
261--271
Opis fizyczny
Bibliogr. 116 poz., 3 rys.
Twórcy
  • Bio-Optics Group, Institute of Physics, Wrocław University of Technology, 27 Wybrzeże Wyspiańskiego Str., 50-370 Wrocław, Poland., halina.podbielska@pwr.wroc.pl
Bibliografia
  • [1] H. Schmidt, “New type of non-crystalline solids between inorganic and organic materials”, J. Non-Cryst. Solids 73, 681–691 (1985).
  • [2] H. Huang, B. Orler, and G. L. Wilkes, “Ceramers: hybrid materials incorporating polymeric/oligomeric species with inorganic glasses by a sol gel process. 2. Effect of acid content on the final properties”, Polym. Bull. 14, 557–564 (1985).
  • [3] J.J. Ebelmen, “Sur les éthers siliciques”, CR Acad. Sci. 19, 398–400 (1844).
  • [4] Structure and Bonding 77, eds.: C.K. Jorgensen and R. Reisfeld, Springer Verlag, 1992.
  • [5] Structure and Bonding 92, eds.: C.K. Jorgensen and R. Reisfeld, Springer Verlag, 1996.
  • [6] B. Abramoff and L.C. Klein, “PMMA – impregnated silica gels: synthesis and characterization”, Proc. SPIE 1328, 241–248 (1990).
  • [7] L.C. Klein (ed.): Sol-Gel Optics: Procesing and Applications, Kluwer Academic Publishers, Boston, 1994.
  • [8] L.L. Hench and J.K. West, “The sol-gel process”, Chem. Rev. 90 (1), 33–72 (1990).
  • [9] C.J. Brinker and G.W. Scherer, Sol-Gel Science, Academic Press, San Diego, 1990.
  • [10] O. Stachs, Th. Gerber, and V. Petkov, “The structure formation of Zirconium oxide gels in alcoholic solutions”, J. Sol-Gel Sci. Technol. 15, 23–30 (1999).
  • [11] B.C. Dave, B. Dunn, J. Selverstone, D. Valentine, and J.I. Zink, “Sol-gel encapsulation methods for biosensors”, Anal. Chem. 66, 1120A–1127A (1994).
  • [12] V. Glezer and O. Lev, “Sol-gel vanadium pentaoxide glucose biosensor”, J. Am. Chem. Soc. 115, 2533–2534 (1993).
  • [13] R. Zusman, C. Rottman, M. Ottolenghi, and D. Avnir, “Doped sol-gel glasses as chemical sensors”, J. Non-Cryst. Solids 122, 107–109 (1990).
  • [14] M. Trinkel, W. Trettnak, F. Reininger, R. Benes, P. O’Leary, and O. Wolfbeis, “Study of the performance of an optochemical sensor for ammonia”, Anal. Chim. Acta 320, 235–243 (1996).
  • [15] A. Lobnik and O. Wolfbeis, “Sol-gel based ammonia optical sensor”, Proc. on SOL-GEL’97: 9th International Workshop on Glasses, Ceramics, Hybrids and Nanocomposites from Gels, Sheffield, UK, 1997.
  • [16] E.J.A. Pope, K. Peterson, and C. Peterson, “Sol-gel bioatificial organs for the treatment of diabetes mellitus”, Proc. on SOLGEL’ 97: 9th International Workshop on Glasses, Ceramics, Hybrids and Nanocomposites from Gels, Sheffield, UK, 1997.
  • [17] L. Sieminska and T.W. Zerda, “Diffusion of steroids from solgel glass”, J. Phys. Chem. 100, 4591–4597 (1996).
  • [18] M.J. Paterson and B. Ben-Nissan, “Multilayer sol-gel zirconia coatings on 316 stainless steel”, Surface and Coatings Technology 86–87, 153–158 (1996).
  • [19] D-M. Liu, Q. Yang, and T. Troczynski, “Sol-gel hydroxyapatite coatings on stainless steel substrates”, Biomaterials 23, 691–698 (2002).
  • [20] W. Que, Z. Sun, Y. Zhou, Y.L. Lam, S.D. Cheng, Y.C. Chan, and C.H. Kam, “Preparation of hard optical coatings based on an organic/inorganic composite by sol-gel method”, Materials Letters 42, 326–330 (2000).
  • [21] S. Sakka and H. Kozuka, “Sol-gel preparation of coating films containing noble metal colloids”, J. Sol-Gel Sci. Technol. 13, 701–705 (1998).
  • [22] C. Garcia, P. Galliano, and S. Cere, “Elecrochemical evaluation of resistance to localised corrosion of vitreous coatings containing particles applied on metalic substrates for biomedical applications”, Materials Letters 57, 1810–1814 (2003).
  • [23] J-X. Liu, D-Z. Yang, F. Shi, and Y-J. Cai, “Sol-gel deposited TiO2 film on NiTi surgical alloy for biocompatybility improvement”, Thin Solid Films 429, 225–230 (2003).
  • [24] T. Olding, M. Sayer, and D. Barrow, “Ceramic sol-gel composite coatings for elecrical insulation”, Thin Solid Films 398–399, 581–586 (2001).
  • [25] B. Surowska, J, Bienia´s, M. Walczak, K. Sangwal, and A. Stoch, “Microstructure and mechanical properties of ceramic coatings on Ti and Ti-based alloy”, Applied Surface Science 238, 288–294 (2004).
  • [26] Y. Xie and H.M. Hawthorne, “Measuring the adhesion of solgel derived coatings to a ductile substrate by an indentationbased method”, Surface and Coatings Technology 172, 42–50 (2003).
  • [27] W. Que and X. Hu, “Optical and mechanical propeties of sol-gel silica-titania hard optical coatings derived from methyltrimethoxysilane and tetrapropylorthotitanate as precursors”, Optical Materials 22, 31–37 (2003).
  • [28] M. Lechna, I. Hołowacz, A. Ulatowska, and H. Podbielska, “Optical properties of sol-gel coating for fiberoptic sensors”, J. Surface and Coatings Technology 151–152, 299–302 (2002).
  • [29] H. Podbielska, A. Ulatowska-Jarza, and I. Holowacz, “Sol-gel applicators for medical light therapy”, Physica Medica XX, Supplement 1, 43–45 (2004).
  • [30] Laser-Induced Interstitial Thermotherapy, eds.: G. Muller and A. Rogan, SPIE Optical Engineering Press, Bellingham, Washington, USA, 1995.
  • [31] E. Rohde, I. Mesecke von Rheinbaben, H. Podbielska, M. Hopf, and G. Mueller, “Interstitial laser-induced thermotheraphy (LITT): Comparison of in-vitro irradiation effects of Nd:YAG (1064 nm) and diode (940 nm) laser”, Med. Laser Appl. 16, 81–90 (2001).
  • [32] M. Lechna, I. Hołowacz, A. Ulatowska, and H. Podbielska, “Optical properties of sol-gel coating for fiberoptic sensors”, J. Surf. Coat. Technol. 151–152, 299–302 (2001).
  • [33] Ł. Jele´n, M. Cegielski, A. Ulatowska-Jar˙za, and H. Podbielska, “Influence of sample preparation methods on transmission electron micrographs of sol-gel materials”, Opt. Appl. 32, 759–766 (2002).
  • [34] J.Kobel A.Suchwałko, H. Podbielska, and A. Ulatowska-Jar˙za, “Examination of sol-gel production repeatability by statistical pattern recognition method”, Opt. Eng. 42, 1137–1143 (2003).
  • [35] L.L. Hench, “The challenge of orthopaedic materials”, Current Orthopaedics 14, 7–14 (2000).
  • [36] B. Nablo, A. Rothrock, and M. Schoenfish, “Nitric oxidereleasing sol-gels as antibacterial coatings for orthopedic implants”, Biomaterials 26, 917–924 (2005).
  • [37] H-W. Kim, H-E. Kim, and J.C. Knowles, “Fluor- hydroxyapatite sol-gel coatinf on titanium substrate for hard tissue implants”, Biomaterials 25, 3351–3358 (2004).
  • [38] L. Gan and R. Pilliar, “Calcium phosphate sol-gel-derived thin films on porous-surfaced implants for enhanced osteoconductivity. Part I: Synthesis and characterization”, Biomaterials 25, 5303–5312 (2004).
  • [39] H. Boettcher, “Bioactive sol-gel coatings”, J. Prakt. Chem. 342, 427–436 (2000).
  • [40] G. Bezzi, G. Celotti, E. Landi, T. La Torretta, I. Sopyan, and A. Tampieri, “A novel sol-gel technique for hydroxyapatite preparation”, Materials Chemistry and Physics 78, 816–824 (2003).
  • [41] J. Liu and X. Miao, “Sol-gel derived bioglass as a coating material for porous alumina scaffolds”, Ceramics International 30, 1781–1785 (2004).
  • [42] N. Li, Q. Jie, S. Zhu, and R. Wang, “A new route to prepare macroporous bioactive sol-gel glasses with high mechanical strength”, Materials Letters 58, 2747–2750 (2004).
  • [43] M. Sato, E.B. Slamovich, and T.J. Webster, “Enhanced osteoblast adhesion on hydrothermally treated hydroxyapatite/titania/poly(lactide-co-glycolide) sol-gel titanium coatings”, Biomaterials 26, 1349–1357 (2005).
  • [44] W.Weng, S. Zhang, K. Cheng, H. Qu, P. Du, G. Shen, J. Yuan, and G. Han, “Sol-gel preparation of bioactive apatite films”, Surface and Coatings Technology 167, 292–296 (2003).
  • [45] M. Jokinen, T. Peltola, S. Veittola, H. Rahiala, and J.B. Rosenholm, “Adjustable biodegradation for ceramic fibres derived from silica sols”, Journal of the European Ceramic Society 20, 1739–1748 (2000).
  • [46] M. Manso, M. Langlet, and J.M. Martinez-Duart, “Testing solgel CaTiO3 coatings for biocompatible applications”, Materials Science and Engineering C23, 447–450 (2003).
  • [47] Y.A. Shchipunov, “Sol-gel-derived biomaterials of silica and carrageenans”, Journal of Colloid and Interface Science 268, 68–76 (2003).
  • [48] J.M. Gomez-Vega, M. Iyoshi, K.Y. Kim, A. Hozumi, H. Sugimura, and O. Takai, “Spin casted mesoporous silica coatings for medical applications”, Thin Solid Films 398–399, 615–620 (2001).
  • [49] A. Ulatowska-Jar˙za, U. Bindig, H. Podbielska, I. Hołowacz, W. Str˛ek, G. Müller, and H.J. Eichler, “Spectroscopic properties of chlorophyll based photosensitive dye entrapped in solgel fiberoptic applicators”, Materials Science 23 (1), (2005).
  • [50] W. Jin and J.D. Brennan, “Properties and applications of proteins encapsulated within sol-gel derived materials”, Analytica Chimica Acta 461, 1–36 (2002).
  • [51] M. Manso, S. Ogueta, J. Perez-Rigueiro, J.P. Garcia, and J.M. Martinez-Duart, “Testing biomaterials by in-situ evaluation of cell response”, Biomolecular Engineering 19, 239–242 (2002).
  • [52] H-H. Yang, Q-Z. Zhu, H-Y. Qu, X-L, Chen, M-T. Ding, and J-G. Xu, “Flow injection fluorescence immunoassay for gentamicin using sol-gel-derived mesoporous biomaterial”, Analytical Biochemistry 308, 71–76 (2002).
  • [53] E.M. Santos, S.Radin, and P. Ducheyne, “Sol-gel derived carrier for the controlled release of proteins”, Biomaterials 20, 1695–1700 (1999).
  • [54] Y.A. Shchipunow, T. Karpenko, I. Bakunina, Y.V. Burtseva, and T.N. Zvyagintseva, “A new precursor for the immobilization of enzymes inside sol-gel-derived hybrid silica nanocomposites containing polysaccharides”, J. Biochem. Biophys. Methods 58, 25–38 (2004).
  • [55] S. Fennouh, S. Guyon, C. Jourdat, J. Livage, and C. Roux, “Encapsulation of bacteria in silica gels”, C. R. Acad. Sci. Paris 2, Serie II c, 625–630 (1999).
  • [56] R. Koncki, G. Mohr, and O.S. Wolfbeis, “Enzyme sensor for urea based on novel pH bulk optode membrane”, Biosensors and Bioelectronics 10, 653–659 (1995).
  • [57] R. Reisfeld and C.K. Jorgensen (eds.), Chemistry, Spectroscopy and Applications of Sol-Gel Glasses, Springer Verlag, Berlin, 1992.
  • [58] L.C. Klein (ed.), Sol-Gel Optics: Processing and Applications, Kluwer Academic Publishers, Boston, 1994.
  • [59] O.S.Wolfbeis, Fiber Optic Chemical Sensors and Biosensors, CRC Press, Boca Raton, 1991.
  • [60] O.S. Wolfbeis (ed.), Biochemical and Medical Sensors, Proc. SPIE 2085, 1993.
  • [61] B.C. Dave, B. Dunn, J. Selverstone, D. Valentine, and J.I. Zink, “Sol-gel encapsulation methods for biosensors”, Anal. Chem. 66, 1120A–1127A (1994).
  • [62] C. Li, Y. Lin, C. Shih, J. Tsaur, and L. Chau, “Sol-gel encapsulation of lactate dehydrogenase for optical sensing of Llactate”, Biosensors and Bioelectronics 17, 323–330 (2002).
  • [63] L. Qingwen, L. Guoan, W. Yiming, and Z. Xingrong, “Immobilization of glucose oxidase in sol-gel matrix and its application to fabricate chemiluminescent glucose sensor”, Materials Science and Enginnering C11, 67–70 (2000).
  • [64] M. Gerritsen, A. Kros, V. Sprakel, J.A. Lutterman, R.J.M. Nolte, and J.A. Jansen, “Biocompatibility evaluation of solgel coatings for subcutaneously implantable glucose sensors”, Biomaterials 21, 71–78 (2000).
  • [65] A. Kros, M. Gerritsen, V. Sprakel, N. Sommerdijk, J.A. Jansen, and R.J.M. Nolte, “Silica-based hybrid materials as biocompatible coatings for glucose sensors”, Sensors and Actuators B81, 68–75 (2001).
  • [66] R. Zusman, C. Rottman, M. Ottolenghi, and D. Avnir, “Doped sol-gel glasses as chemical sensors”, J. Non-Cryst. Solids 122, 107–109 (1990).
  • [67] D. Blyth, S. Poynter, and D. Russell, “Calcium biosensing with a sol-gel immobilized photoprotein”, Analyst 121, 1975–1978 (1996).
  • [68] M. Javaid and P. Keay, “A generic technique for coating doped sol-gel films onto the inside of tubes for use as colorimetric sensors”, J. Sol-Gel Sci. Technol. 17, 55–59 (2000).
  • [69] P. Jeronimo, A. Araujo, M. Montenegro, D. Satinsky, and P. Solich, “Colorimetric bismuth determination in pharmaceuticals using a xylenol orange sol-gel sensor coupled to a multicommutated flow system”, Anal. Chim. Acta 504, 235–241 (2004).
  • [70] D. Delmarre, R. Meallet, C. Bied-Charreton, and R. Pansu, “Heavy metal ions detection in solution, in sol-gel and with grafted porphyrin monolayers”, J. Photochem. Photobiol. A 124, 23–28 (1999).
  • [71] T. Canada, L. Allain, D. Beach, and Z. Xue, “High-acidity determination in salt-containing acids by optical sensors. The scope of a dual-transducer approach and the Hammett acidity function”, Anal. Chem. 74, 2535–2540 (2002).
  • [72] L. Allain, T. Canada, and Z. Xue, “Optical sensors and the salt effect: a dual-transducer approach to acidity determination in a salt-containing concentrated strong acids”, Anal. Chem. 73, 4592–4598 (2001).
  • [73] D. Nivens, Y. Zhang, and S. Angel, “A fiber-optic pH sensor prepared using a base-catalyzed organo-silica sol-gel”, Anal. Chim. Acta 376, 235–245 (1998).
  • [74] D. Nivens, M. Schiza, and S. Angel, “Multilayer sol-gel membranesfor optical sensing applications: single layer pH and dual layer CO2 and NH3 sensors”, Talanta 58, 543–550 (2002).
  • [75] E.Wang, K. Chow, V. Kwan, T. Chin, C. Wong, and A. Bocarsly, “Fast and long term optical sensor for pH based on sol-gel”, Anal. Chim. Acta 495, 45–50 (2003).
  • [76] K. Ertekin, C. Karapire, S. Alp, B. Yenigül, and S. Icli, “Photophysical and photochemical characteristics of an azlactone dye in sol-gel matrix; a new fluorescent pH indicator”, Dyes and Pigments 56, 125–133 (2003).
  • [77] S. Lee, J. Gin, V. Nampoori, C. Vallabhan, N. Unnikrishnan, and P. Radhakrishnan, “A sensitive fibre optic pH sensor using multiple sol-gel coatings”, Journal of Optics A: Pure and Applied Optics 3, 355–359 (2003).
  • [78] J. Lin and D. Liu, “An optical sensor with a linear response over a broad range”, Anal. Chim. Acta 408, 49–55 (2000).
  • [79] D. Delmarre, R. Meallet-Renault, C. Bied-Charreton, and R. Pasternack, “Incorporation of water-soluble porphyrins in solgel matrices and application to pH sensing”, Anal. Chim. Acta 401, 125–128 (1999).
  • [80] F.B.M. Suah, M. Ahmad, and M.N. Taib, “Applications of artificial neural network on signal processing of optical fibre pH sensor based on bromophenol blue doped with sol-gel film”, Sensors and Actuators B 90, 182–188 (2003).
  • [81] T.M. Butler, B.D. MacCraith, and C.M. McDonagh, “Development of an extended range fibre optic pH sensor using evanescent wave absorption of sol-gel entrapped pH indicators”, Proc. SPIE 2508, 168–178 (1995).
  • [82] J. Rayss and G. Sudolski, “Ion absorption in the porous sol-gel silica layer in the fibre optic pH sensor”, Sensors and Actuators B 87, 397–405 (2002).
  • [83] M. Janotta, M. Karlowatz, F. Vogt, and B. Mizaikoff, “Sol-gel based mid-infrared evanescent wave sensors for detection of organophosphate pesticides in aqueous solution”, Anal. Chim. Acta 496, 339–348 (2003).
  • [84] V. Andreou and Y. Clonis, “A portable fiber-optic pesticide biosensor based on immobilized cholinesterase and sol-gel entrapped bromocresol purple for in-field use”, Biosensors and Bioelectronics 17, 61–69 (2002).
  • [85] A. Graham, C. Carlson, and P. Edmiston, “Development and characterization of molecularly imprinted sol-gel materials for the selective detection of DDT”, Anal. Chem. 74, 458–467 (2002).
  • [86] A. Jitianu, Y. Altindag, M. Zaharescu, and M. Wark, “New SnO2 nano-clusters obtained by sol-gel route, structural characterization and their gas sensing applications”, J. Sol-Gel Sci. Technol. 26, 483–488 (2003).
  • [87] R. Rella, A. Rizzo, A. Licciulli, P. Siciliano, L. Troisi, and L. Valli, “Tests in controlled atmosphere on new oprical gas sensing layers based on TiO2/metal-phtalocyanines hybrid system”, Materials Science and Engineering C 22, 439–443 (2002).
  • [88] H. Segawa, E. Ohnishi, Y. Arai, and K. Yoshida, “Sensitivity of fiber-optic carbon dioxide sensors utilizing indicator dye”, Sensors and Actuators B 94, 276–281 (2003).
  • [89] S.A. Grant, J.H. Satcher Jr., and K. Bettencourt, “Development of sol-gel based fiber optic nitrogen dioxide gas sensors”, Sensors and Actuators B 69, 132–137 (2000).
  • [90] J.F. Brinkley, M.L. Kirkey, A.D.S. Marques, and C.T. Lin, “Charge transfer complexes of Cu(II)/HD analogue in sol-gel sensors”, Chemical Physics Letters 367, 39–43 (2003).
  • [91] C. von Bültzingslowen, A.K. McEvoy, C. McDonagh, B.D. MacCraith I. Klimant, C. Krause, and O.S. Wolfbeis, “Solgel based optical carbon dioxide sensor employing dual luminophore referencing for application in food packaging technology”, Analyst 127, 1478–1483 (2002).
  • [92] C. von Bültzingslowen, A.K. McEvoy, C. McDonagh, and B.D. MacCraith, “Lifetime-based optical sensor for highlevel pCO2 detection employing fluorescence resonance energy transfer”, Anal. Chim. Acta 480, 275–283 (2003).
  • [93] J.R. Lakowicz, Principles of Fluorescent Spectroscopy, Plenum Press, 1983.
  • [94] R.T. Bailey, F.R. Cruickshank, G. Deans, R.N. Gillanders, and M.C. Tedford, “Characterization of a fluorescent sol-gel encapsulated erythrosine B dissolved oxygen sensor”, Anal. Chim. Acta 487, 101–108 (2003).
  • [95] C. Malins, S. Fanni, H. Glever, J. Vos, and B. MacCraith, “The preparation of a sol-gel glass oxygen sensor incorporating a covalently bound fluorescent dye”, Anal. Commun. 36, 3–4 (1999).
  • [96] Y. Tang, E. Tehan, Z. Tao, and F. Bright, “Sol-gel-derived sensor materials that yield linear calibration plots, high sensitivity, and long-term stability”, Anal. Chem. 75, 2407–2413 (2003).
  • [97] S. Lee and I. Okura, “Porphyrin-doped sol-gel glass as a probe for oxygen sensing”, Anal. Chim. Acta 342, 181–188 (1997).
  • [98] D. Andrzejewski, I. Klimant, and H. Podbielska, “Method for lifetime-based sensing using the demodulation of the luminescence signal”, Sensors and Actuators B 84, 160–166 (2002).
  • [99] S. Okazaki, H. Nakagawa, S. Asakura, Y. Tomiuchi, N. Tsuji, H. Murayama, and M.Washiya, “Sensing characteristics of an optical fiber sensor for hydrogen leak”, Sensors and Actuators B 93, 141–147 (2003).
  • [100] U. Noor and D. Uttamchandani, “Sol-gel derived thin films for hydrogen sulfide gas sensing”, J. Sol-Gel Sci. Technol. 11, 177–183 (1998).
  • [101] S.K. Shukla, G.K. Parashar, A.P. Mishra, P. Misra, B.C. Yadav, R.K. Shukla, L.M. Bali, and G.C. Dubey, “Nano-like magnesium oxide films and its significance in optical fiber humidity sensor”, Sensors and Actuators B 98, 5–11 (2004).
  • [102] M. Trinkel, W. Trettnak, F. Reininger, R. Benes, P. O’Leary, and O. Wolfbeis, “Study of the performance of an optochemical sensor for ammonia”, Anal. Chim. Acta 320, 235–243 (1996).
  • [103] A. Lobnik and O. Wolfbeis, “Sol-gel based optical sensor for dissolved ammonia”, Sensors and Actuators B51, 203–207 (1998).
  • [104] R. Koncki, G. Mohr, and O.S. Wolfbeis, “Enzyme sensor for urea based on novel pH bulk optode membrane”, Biosensors and Bioelectronics 10, 653–659 (1995).
  • [105] S. Braun, S. Shtelzer, S. Rappoport, D. Avnir, and M. Ottolenghi, “Biocatalysis by sol-gel entrapped enzymes”, J. Non-Cryst. Solids 147–148, 739–743 (1992).
  • [106] A. Ulatowska-Jar˙za and H. Podbielska, “Biosensor for urea detection based on sol-gel technology”, Opt. Appl. 32 (4), 685–690 (2002).
  • [107] K. Cherif, S. Hleli, A. Abdelghani, N. Jaffrezic-Renault, and V. Matejec, “Chemical detection in liquid media with a refractometric sensor based on a multimode optical fibre”, Sensors 2, 195–204 (2002).
  • [108] D. Delmarre and C. Bied-Charreton, “Grafting of cobalt porphyrins in sol-gel matrices: application to the detection of amines”, Sensors and Actuators B 62, 136–142 (2000).
  • [109] E. Cho and F. Bridht, “Pin-printed chemical sensor arrays for simultaneous multianalyte quantification”, Anal. Chem. 74, 1462–1466 (2002).
  • [110] E. Cho and F. Bridht, “Integrated chemical sensor array platform based on a light emitting diode, xerogel-derived sensor element, and high-speed pin printing”, Anal. Chim. Acta 470, 101–110 (2002).
  • [111] F.L. Dickert and O. Hayden, “Bioimprinting of polymers and sol-gel phases. Selective detection of yeast with imprinted polymers”, Analytical Chemistry 74, 1302–1306 (2002).
  • [112] A. Kishen, M.S. John, C.S. Lim, and A. Asundi, “A fiber optic based biosensor to monitor mutants streptococci in saliva”, Proc. SPIE 5068, 194–201 (2003).
  • [113] A. Kishen, M.S. John, C.S. Lim, and A. Asundi, “A fiber optic biosensor (FOBS) to monitor mutants streptococci in human saliva”, Biosensors and Bioelectronics 18, 1371–1378 (2003).
  • [114] P.V. Preejith, C.S. Lim, A. Kishen, M.S. John, and A. Asundi, “Total protein measurement using a fiber-optic evanescent wave-based biosensor”, Biotechnology Letters 25, 105–110 (2003).
  • [115] E. Sagi, N. Hever, R. Rosen, A.J. Bartolome, J.R. Premkumar, R. Ulber, O. Lev, T. Scheper, and S. Belkin, “Fluorescence and bioluminescence reporter functions in genetically modified bacterial sensor strains”, Sensors and Actuators B 90, 2–8 (2003).
  • [116] K. Flora and J. Brennan, “Comparison of formats for the development of fiber-optic biosensors utilizing sol-gel derived materials entrapping fluorescently-labelled protein”, Analyst 124, 1455–1462 (1999).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0006-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.