PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Advances in electrical impedance methods in medical diagnostics

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The electrical impedance diagnostic methods and instrumentation developed at the Gdansk and Warsaw Universities of Technology are described. On the basis of knowledge of their features, several original approaches to the broad field of electrical impedance applications are discussed. Analysis of electrical field distribution after external excitation, including electrode impedance, is of primary importance for measurement accuracy and determining the properties of the structures tested. Firstly, the problem of electrical tissue properties is discussed. Particular cells are specified for in vitro and in vivo measurements and for impedance spectrometry. Of especial importance are the findings concerning the electrical properties of breast cancer, muscle anisotropy and the properties of heart tissue and flowing blood. The applications are both important and wide-ranging but, for the present, special attention has been focused on the evaluation of cardiosurgical interventions. Secondly, methods of instrument construction are presented which use an electrical change in conductance, such as impedance pletysmography and cardiography, for the examination of total systemic blood flow. A new method for the study of right pulmonary artery bloodftow is also introduced. The basic applications cover examination of the mechanical activity of the heart and evaluation of many haemodynamic parameters related to this. Understanding the features that occur during blood flow is of major importance for the proper interpretation of measurement data. Thirdly, the development of electrical impedance tomography (ElT) is traced for the purposes of determining the internal structure of organs within the broad field of 2-D and 3-D analysis and including modelling of the organs being tested, the development of reconstruction algorithms and the construction of hardware.
Rocznik
Strony
231--243
Opis fizyczny
Bibliogr. 46 poz., 15 rys., 2 tab.
Twórcy
autor
autor
  • Department of Biomedical Engineering, Gdansk University of Technology, 11/12 Narutowicza Str., 80-952 Gdańsk, Poland., antowak@biomed.eti.pg.gda.pl
Bibliografia
  • [1] Proc. IX Int. Conference on Electrical Bio-Impedance, [eds.] E. Gersing and M. Schaefer, ICPRBI, Heidelberg, 1995.
  • [2] Proc. X Int. Conference on Electrical Bio-Impedance, [eds.] P. Riu, J. Rosell, R. Bragos, and O. Casas, Publ. Office of UPC, Barcelona, 1998.
  • [3] Proc. XI Int. Conference on Electrical Bio-Impedance, [eds.] S. Grimnes, O. Martinsen, and H. Bruvoll, Oslo, 2001.
  • [4] Proc. XII Int. Conference on Electrical Bio-Impedance, [eds.] A. Nowakowski, J. Wtorek, A. Bujnowski, and A. Janczulewcz, Gdańsk, 2004.
  • [5] P. Riu, J. Rosell, R. Bragos and O. Casas, “Electrical bioimpedance methods”, Ann. NY Acad. Sci. 873, (1999).
  • [6] J.P. Morucci, M.E. Valentinuzzi, B. Rigaud, C.J. Felice, N. Chauveau, and P.M. Marsili, “Bioelectrical impedance techniques in medicine”, Crit. Rev.TM in Biomed. Eng. 24(4–6), 223–681 (1996).
  • [7] J. Wtorek, Electroimpedance Techniques in Medicine, GUT Publ., Monograph series: 43, 2003, (in Polish).
  • [8] Physiological Measurement, [eds.] R.H. Bayford, A. Nowakowski, 26(2), 2005.
  • [9] J. Wtorek, A. Nowakowski, T. Pałko, and W.G. Pawlicki, “Bioelectroimpedance measurements”, in Biocybernetics and Biomedical Engineering 2000 2, 477–512 (2001), (in Polish).
  • [10] T. Pałko, B. Galwas, and G. Pawlicki, “Passive electric tissue properties and applications”, in Biocybernetics and Biomedical Engineering 2000 9, 363–400 (2002), (in Polish).
  • [11] J. Wtorek, A. Nowakowski, A. Bujnowski, and J. Siebert, Electroimpedance tomography, in Biocybernetics and Biomedical Engineering 2000 8, 697–758 (2003), (in Polish).
  • [12] W.G. Kubicek, J.R. Karnegis, R.P. Patterson, D.A. Witose, and R.H. Mattson, “Development and evaluation of an impedance cardiographic system to measure cardiac output and other cardiac parameters”, Aerospace Medicine 37, 1208–1212 (1966).
  • [13] D.B. Geselowitz, “An application of electrocardiographic lead theory to impedance plethysmography”, IEEE Trans. Biomed. Eng. 18, 38–41 (1971).
  • [14] J. Wtorek, A. Polinski, J. Stelter, and A. Nowakowski, “Cell for measurements of biological tissue complex conductivity”, Technology and Health Care 177–193, (1998).
  • [15] J. Wtorek, L. Józefiak, A. Poli´nski, and J. Siebert, “An Averaging Two-Electrode Probe for Monitoring Changes in Myocardial Conductivity Evoked by Ischemia”, IEEE Trans. Biomed. Eng. 49(3), 240–246 (2002).
  • [16] J. Wtorek, A. Bujnowski, A. Poli´nski, L. Józefiak, and B. Truyen, “A Probe for Immittance Spectroscopy Based on the Parallel Electrode Technique”, Physiol. Meas. 25(5), 1249 –1260 (2004).
  • [17] J. Stelter, J. Wtorek, A. Nowakowski, A. Kopacz, and T. Jastrz ˛ebski, “Complex permittivity of breast tumour tissue”, Proc. of Xth ICEBI, Barcelona, Spain, 59–62, (1998).
  • [18] J. Wtorek, A. Bujnowski, A. Polinski, and A. Nowakowski, “A six-ring probe for monitoring conductivity changes”, Physiol. Meas. 26(2), S69–S79 (2005).
  • [19] J. Wtorek and A. Polinski, “The contribution of blood-flowinduced conductivity changes to measured impedance”, IEEE Trans. on Biomed. Eng. 52, 41–49 (2005).
  • [20] J. Siebert, J. Wtorek, and J. Rogowski, “Stroke volume variability – cardiovascular orthostatic manoeuvre in patients with coronary artery diseases”, Ann. NY Acad. Sci. 873, 182–190 (1999).
  • [21] T. Palko, F. Bialokoz, and J. Weglarz, “Multifrequency device for measurement of complex electrical bio-impedance-design and application”, Proc. RC IEEE – EMBS & 14th BMESI, 87– 94 (1995).
  • [22] H. Kanai, “Frequency characteristics of electrical properties of living tissues and its clinical applications”, Proc. VIIIth ICEBI, Kuopio, 5–7, (1992).
  • [23] T. Palko and B. Szafjanski, “Analysis of possibilities of a quantitative estimation of pulmonary blood flow by an impedance rheographic method”, Probl. Med. Techn. 15, 33–42 (1984), (in Polish).
  • [24] T. Palko, “Rheoimpedance methods for aortic and pulmonary blood flow”, Med. Biol. Eng. Comp. 23, Suppl. 1, 119 (1985).
  • [25] J. Wtorek, A. Poli´nski, and J. Siebert, “Influence of spatial conductivity distribution on relative contributions to ICG signals from thorax – FEM model study”, IEEE Engineering in Medicine and Biology Society, 18th Ann. Intern. Conf., CDROM-933, Amsterdam, 1996.
  • [26] A. Polinski, J. Wtorek, A. Nowakowski, and L. Józefiak, “Anisotropy in impedance plethysmography”, Proc. of 4th Europ. Conf. on Eng. & Med., Warsaw, 15–16 (1997).
  • [27] J. Wtorek, “Relations between components of impedance cardiogram analyzed by means of finite element model and sensitivity theorem”, Ann. Biomed. Eng. 28 (11), 1301–1310 (2000).
  • [28] A. Nowakowski, J. Wtorek, and J. Stelter, “Technical University of Gda´nsk Electroimpedance mammography”, IX ICEBI, Heidelberg, 434–437, (1995).
  • [29] M. Kocikowski, A. Poli´nski, A. Nowakowski, and J. Wtorek, “Problems of 3D reconstruction and visualisation in EIT”, Task Quarterly 1 (2), 162–174 (1997).
  • [30] J. Wtorek, J. Stelter, and A. Nowakowski, “Impedance mammograph 3D phantom studies”, Ann. NY Acad. of Sci. 873, 520– 533 (1999).
  • [31] A. Nowakowski, J. Wtorek, A. Bujnowski, J. Stelter, A. Hahn, and A. Ma˛czynski, “Dual frequency 128 electrode electroimpedance tomograph (DFEIT)”, European Medical & Biological Engineering Conference, Medical & Biological Engineering & Computing incorporating Cellular Engineering 37, Suppl. 2, 156–157, (1999).
  • [32] M. Kocikowski and A. Nowakowski, RCFART – 3D Reconstruction Algorithm for EIT, Proc. of Xth ICE BI, Barcelona, 425–428, (1998).
  • [33] A. Bujnowski and J. Wtorek, “Comparison of the current-mode back projection and Jacobian-based reconstruction algorithms”, Proc. XII ICEBI & V EIT, Gda´nsk, 599–602 (2004).
  • [34] A. Bujnowski, J. Wtorek, and B. Truyen, “Modular impedance tomograph for shallow soil subsurface investigations”, Proc. XIIth ICEBI & Vth EIT, Gda´nsk, 665–668 (2004).
  • [35] G. Gisser, D. Issaacson, and J. Newell, “Theory and performance of an adaptive current tomography”, Clin. Phys. Physiol. Measur. 9, suppl. A, 35–41 (1988).
  • [36] J. Wtorek, A. Bujnowski, J. Stelter, and A. Nowakowski, “Algorithm and the circuit for measurements in EIT”, Patent 331130/1999.01.29, (in Polish).
  • [37] T.J. Yorkey, J.G. Webster, and W.J. Tompkins, “An improved perturbation technique for electrical impedance imaging with some criticism”, IEEE Trans.on Biomed. Eng. 34, 898–901 (1987).
  • [38] Y. Kim, J.G. Webster, and W. J. Tompkins, “Electrical impedance imaging of the thorax”, J. Microwave Power 18, 245–257 (1983).
  • [39] T.J. Yorkey, J.G. Webter, and W.J. Tompkins, “Comparing reconstruction algorithms for electrical impedance tomography”, IEEE Trans. on Biomed. Eng. 34, 843–852 (1987).
  • [40] D.C. Barber and B.H. Brown, “Recent developments in applied potential tomography”, Processing in Medical Imaging, [ed.] Bacharach, 106–1211 (1986).
  • [41] T. Murai and Y. Kagawa, “Electrical impedance computed tomography based on a finite element model”, IEEE Trans. Biomed. Eng. 32, 177–184 (1985).
  • [42] M. Cheney, D. Isaacson, J. Newell, J. Globe, and S. Simske, “NOSER: An algorithm for solving the inverse conductivity problem”, Int. J. Imaging Systems Technology 2, 66–75 (1990).
  • [43] A. Wexler, B. Fry, and M.R. Neiman, “Impedance-computed tomography algorithm and system”, Appl. Opt. 24, 3985–3992 (1985).
  • [44] P.M. Marsili, V. Amalric, G. Mounie, M. Granie, and J.P. Morucci, “Optimal control and boundary element methods as a reconstruction algorithm in impedance imaging”, Proc. of a Meeting on Electrical Impedance Tomography, Copenhagen, 116–127 (1990).
  • [45] M. Kozuoglu, K. Leblebicioglu, and Y.Z. Ider, “A fast image reconstruction algorithm for electrical impedance tomography”, Physiol. Meas. 15, A115–A124 (1994).
  • [46] A. Janczulewicz and J. Wtorek, “An EIT reconstruction algorithm: a comparison of one-step and iterative versions”, Proc. SPIE 5505, 144–150 (2004).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0006-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.