PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High resolution ECG and MCG mapping: simulation study of single and dual accessory pathways and influence of lead displacement and limited lead selection on localisation results

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this simulation study, we used an anatomical computer model of the human ventricles to simulate body surface potentials and magnetic field for 10 single preexcitation sites and 8 pairs of preexcitation sites positioned on the epicardial surface along the atrio-ventricular ring. We demonstrated that electrocardiographic and magnetocardiographic inverse solutions using a pair of equivalent dipoles could be employed in localising dual accessory pathways. Average localisation errors were in the range of 5 to 21 mm and 3 mm to 20 mm, respectively, when body surface potentials and magnetic field were used. Additionally, we have investigated the influence of random lead displacements and limited lead selection on localisation results.
Rocznik
Strony
195--205
Opis fizyczny
Bibliogr. 25 poz., 15 rys., 2 tab.
Twórcy
autor
autor
autor
Bibliografia
  • [1] I. Singer, Interventional Electrophysiology, Baltimore: Williams and Wilkins, 1997.
  • [2] P. Savard, A. Ackaoui; R.M. Gulrajani, R. Nadeau, F.A. Roberge; R. Guardo, and B. Dube, “Localization of cardiac ectopic activity in man by a single moving dipole. Comparison of different computation techniques”, J. Electrocardiol. 18, 211–222 (1985).
  • [3] J. Nenonen, C.J. Purcell, B.M. Horáˇcek, G. Stroink, and T. Katila, “Magnetocardiographic functional localization using a current dipole in a realistic torso”, IEEE Trans. Biomed. Eng. 38, 658–664 (1991).
  • [4] V. Jazbinsek, R. Hren, G. Stroink, B.M. Horáˇcek, and Z. Trontelj, “Value and limitations of an inverse solution for two equivalent dipoles in localizing dual accessory pathways”, Med. Biol. Eng. Comput. 41, 133–140 (2003).
  • [5] V. Jazbinsek and R. Hren, “Influence of randomly displaced BSPM leads on the identification of ventricular preexcitation sites”, Biomed. Eng. 44 (Suppl. 2), 104–107 (1999).
  • [6] R.L. Lux, C.R. Smith, R.F.Wyatt, and J.A. Abildskov, “Limited lead selection for estimation of body surface potential maps in electrocardiography”, IEEE Trans. Biomed. Eng. 25, 270–276 (1978).
  • [7] J.A. Abildskov and L.S. Green, “The recognition of arrhythmia vulnerability by body surface electrocardiographic mapping”, Circulation 75 (Suppl III), 79–83 (1987).
  • [8] R.L. Lux, “Electrocardiographic mapping: Noninvasive electrophysiological cardiac imaging. Circulation 87, 1040–1042 (1993).
  • [9] R. Hren, G. Stroink, and B.M. Horáˇcek, “Accuracy of single-dipole inverse solution when localising ventricular preexcitation sites: simulation study”, Med. Biol. Eng. Comp. 36, 323–329 (1998).
  • [10] R. Hren, G. Stroink, and B.M. Horáˇcek, “Spatial resolution of body surface potential maps and magnetic field maps: A simulation study applied to the identification of ventricular preexcitation sites”, Med. Biol. Eng. Comp. 36, 145–157 (1998).
  • [11] R. Hren, “Value of epicardial potential maps in localizing pre-excitation sites for radiofrequency ablation: A simulation study”, Phys. Med. Biol. 43, 1449–1468 (1998).
  • [12] C. Purcell and G. Stroink, “Moving dipole inverse solutions using realistic torso models”, IEEE Trans. Biomed. Eng. 38, 82–84 (1991).
  • [13] E. Macchi, G. Arisi, and B. Taccardi, “Identification of ectopic ventricular foci by means of intracavitary potential mapping: a proposed method”, Acta Cardiol. 47, 421–33 (1992).
  • [14] B. Taccardi, E. Macchi, R.L. Lux, P.R. Ershler, S. Spaggiari, S. Baruffi, and Y. Vyhmeister, “Effect of myocardial fiber direction on epicardial potentials”, Circulation 90, 3076–3090 (1994).
  • [15] J. Lotjonen, I.E. Magnin, J. Nenonen, and T. Katila, “Reconstruction of 3-D geometry using 2-D profiles and a geometric prior model”, IEEE Trans. Med. Imaging 18, 992–1002 (1999).
  • [16] D. van’t Ent, J.C. de Munck, and A.L. Kaas, “A fast method to derive realistic BEM models for E/MEG source reconstruction”, IEEE Trans. Biomed. Eng. 48.,1434–1443 (2001).
  • [17] B.M. Horáˇcek, R.G. de Boer, L.J. Leon, and T.J. Montague, “Human epicardial potential distributions computed from body surface available data”, in Advances in Body Surface Potential Mapping, pp. 47–54, Nagoya, University of Nagoya Press, 1983.
  • [18] B.M. Horáˇcek and J.C. Clements, “The inverse problem of electrocardiography: A solution in terms of single- and doublelayer sources on the epicardial surface”, Math. Biosci. 144, 119–145 (1997).
  • [19] R. Hren and G. Stroink, “Noninvasive characterisation of multiple ventricular events using electrocardiographic imaging”, Med. Biol. Eng. Comp. 39, 447–454 (2001).
  • [20] H.S. Oster, B. Taccardi, R.L. Lux, P.R. Ershler, and Y. Rudy, “Noninvasive electrocardioghraphic imaging: reconstruction of epicardial potentials, electrograms, and isochrones and localization of single and multiple electrocardiac events”, Circulation 96, 1012–1024 (1997).
  • [21] C.J. Penney, J.C. Clements, and B.M. Horáˇcek, “Non-invasive imaging of epicardial electrograms during controlled myocardial ischemia”, in Computers in Cardiology, pp. 103–106, Los Alamitos, IEEE Computer Society Press (2000).
  • [22] C. Ramanathan and Y. Rudy, “Electrocardiographic imaging: I. Effect of torso inhomogeneities on body surface electrocardiographic potentials”, J. Cardiovasc. Electrophysiol. 12, 229–240 (2001).
  • [23] C. Ramanathan and Y. Rudy, “Electrocardiographic imaging: I. Effect of torso inhomogeneities on noninvasive reconstruction of epicardial potentials, electrograms, and isochrones”, J. Cardiovasc. Electrophysiol. 12, 241–252, 2001.
  • [24] V. Jazbinsek, O. Kosch, P. Meindl, U. Steinhoff, Z. Trontelj, and L. Trahms, “Multichannel vector MFM and BSPM of chest and back”, in 12th Int. Conf. on Biomagnetism, pp. 583–586, Espoo, Helsinki Univ. of Technology, (2001).
  • [25] M. Burghoff, J. Nenonen, L. Trahms, and T. Katila, “Conversion of magnetocardiographic recordings between two different multichannel SQUID devices”, IEEE Trans. Biomed. Eng. 47, 869–875 (2000).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0006-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.