PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Defect states in the GIGS solar cells by photocapacitance and deep level optical spectroscopy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thin film solar cells based on multinary compound Cu(In,Ga)Se2 show record photovoltaic conversion efficiency approaching 20%. Investigation on defect physics in this compound is crucial for making further progress in the technology. In this work we present the results on photo capacitance (PC) and deep level optical spectroscopy (DLOS) for two types of cells high efficiency Cu(In,Ga)Se2 cell with about 20% of gallium and pure gallium CuGaSe2 device. We show that PC and DLOS, employed as the techniques complimentary to deep level transient spectroscopy DLTS and admittance spectroscopy, are useful methods in providing information on defect levels in solar cells. In particular they are helpful in differentiating between levels belonging to the bulk of absorber and to the interface states. We tentatively assign some of the observed deep levels to Incu or Gacu antisites and Cu interstitials.
Słowa kluczowe
Rocznik
Strony
157--161
Opis fizyczny
Bibliogr. 18 poz., 6 rys.
Twórcy
autor
autor
  • Faculty of Physics, Warsaw University of Technology, 75 Koszykowa Str., 00-662 Warsaw, Poland., igalson@if.pw.edu.pl
Bibliografia
  • [1] J. A.M. Abushama, S. Johnston, T. Moriarty, G. Teeter, K. Ramanathan, and R. Noufi, “Properties of ZnO/CdS/CuInSe2 solar cells with improved performance”, Prog. Photov.: Res. Appl. 12, 39–45 (2004).
  • [2] B. Dimmler, M. Powalla, and H.W. Schock, “CIS-based thin-film photovoltaic modules: potential and prospects”, Prog. Photov.: Res. Appl. 10, 149–57 (2002).
  • [3] U. Rau and H.W. Schock, “Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells-recent achievements, current understanding, and future challenges”, Appl. Phys. A69, 131–47 (1999).
  • [4] M. Igalson and H.W. Schock, “The metastable changes of hole and electron trap spectra of CuInSe2-based photovoltaic devices”, J. Appl. Phys. 80, 5765–9 (1996).
  • [5] A. Niemegeers, M. Burgelman, R. Herberholz, U. Rau, D. Hariskos, and H.W. Schock, “Model for electronic transport in Cu(In,Ga)Se2 solar cell”, Prog. Photovolt.: Res. Appl. 6, 407–21 (1998).
  • [6] P. Zabierowski, U. Rau and M. Igalson, “Classsification of the metastabilities in the electrical characteristics of ZnO/CdS/Cu(In,Ga)Se2 devices”, Thin Solid Films 387, 147–50 (2001).
  • [7] M. Igalson, M. Bodegård, L. Stolt, and A. Jasenek, “The defected layer” and the mechanism of the interface-related metastable behavior in the ZnO/CdS/Cu(In,Ga)Se2 devices”, Thin Solid Films 431–432C, 153–157 (2003).
  • [8] P. Zabierowski and M. Edoff, “Laplace-DLTS analysis of the minority carrier traps in the Cu(In,Gas)Se2-based solar cells”, Thin Solid Films 480–481C, 301–306 (2005).
  • [9] M. Igalson and P. Zabierowski, “Electron traps in Cu(In,Ga)Se2 absorbers of thin film solar cells studied by junction capacitance techniques”, Opto-Electron. Rev. 11, 261–267 (2003).
  • [10] S. Siebentritt, “Wide gap chalcopyrites: material properties and solar cells”, Thin Solid Films 403–404, 1–8 (2002).
  • [11] J. Kessler, M. Bodegård, J. Hedström, and L. Stolt, “Baseline Cu(In,Ca)Se2 device production: control and statistical significance”, Sol. Ener. Mat. Sol. Cells 67, 67–76 (2001).
  • [12] S. Schuler, S. Nishiwaki, M. Dziedzina, R. Klenk, S. Siebentritt, and M.C. Lux-Steiner, “Solar cells based on PVD grown CuGaSe2 absorber and device properties”, Mater. Res. Soc. Symp. Proc. Warrendale, PA, USA 668, H5.14.1–6. (2001).
  • [13] M. Igalson and P. Zabierowski, “Transient capacitance spectroscopy of defect levels in CIGS devices”, Thin Solid Films 361–362, 371–7 (2000).
  • [14] P. Blood and J.W. Orton, The Electrical Characterization of Semiconductors, pp. 698–704, Academic Press Ltd, London, 1992.
  • [15] J.T. Heath, J.D. Cohen, W.N. Shafarman, D.X. Liao, and A.A. Rockett, “Effect of Ga content on defect states in CuIn1¡xGaxSe2 photovoltaic devices”, Appl. Phys. Lett. 80, 4540–4542 (2002).
  • [16] J. Malmström, J. Wennerberg, and L. Stolt, “A study of the influence of the Ga content on the long-term stability of Cu(In,Ga)Se2 thin film solar cells”, Thin Solid Films 431–432, 436–442 (2003).
  • [17] S.B. Zhang, S.H. Wei, A. Zunger, and H. Katayama- Yoshida, “Defect physics of the CuInSe2 chalcopyrite semiconductor”, Phys. Rev. B57, 9642–9656 (1998).
  • [18] S.H. Wei, S.B. Zhang, and A. Zunger, “Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties”, Appl. Phys. Lett. 72, 3199–3201 (1998).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0005-0050
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.