PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optical network and FPGAlDSP based control system for free electron laser

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work presents a structural and functional model of a distributed low level radio frequency (LLRF) control, diagnostic and telemetric system for a large industrial object. An example of system implementation is the European TESLA-XFEL accelerator. The free electron laser is expected to work in the VUV region now and in the range of X-rays in the future. The design of a system based on the FPGA circuits and multi-gigabit optical network is discussed. The system design approach is fully parametric. The major emphasis is put on the methods of the functional and hardware concentration to use fully both: a very big transmission capacity of the optical fiber telemetric channels and very big processing power of the latest series of DSP/PC enhanced and optical I/O equipped, FPGA chips. The subject of the work is the design of a universal, laboratory module of the LLRF sub-system. The current parameters of the system model, under the design, are presented. The considerations are shown on the background of the system application in the hostile industrial environment. The work is a digest of a few development threads of the hybrid, optoelectronic, telemetric networks (HOTN). In particular, the outline of construction theory of HOTN node was presented as well as the technology of complex, modular, multilayer HOTN system PCBs. The PCBs contain critical sub-systems of the node and the network. The presented exemplary sub-systems are: fast optical data transmission of 2.5 Gbit/s, 3.125 Gbit/s and 10 Gbit/s; fast AlC and CIA multichannel data conversion managed by FPGA chip (40 MHz, 65 MHz, 105 MHz), data and functionality concentration, integration of floating point calculations in the DSP units of FPGA circuit, using now discrete and next integrated PC chip with embedded OS; optical distributed timing system of phase reference; and 1 GbEth video interface (over UTP or FX) for CCD telemetry and monitoring. The data and functions concentration in the HOTN node is necessary to make efficient use of the multigigabit optical fiber transmission and increasing the processing power of the FPGAlDSP/PC chips with optical I/O interfaces. The experiences with the development of the new generation of HOTN node based on the new technologies of data and functions concentration are extremely promising, because such systems are less expensive and require less labour.
Rocznik
Strony
123--138
Opis fizyczny
Bibliogr. 27 poz., 17 rys., 7 tab.
Twórcy
autor
autor
autor
  • Institute of Electronic Systems, Warsaw University of Technology 15/19 Nowowiejska Str., 00-665 Warsaw, Poland., r.romaniuk@ise.pw.edu.pl
Bibliografia
  • [1] R. Romaniuk, Optical Terabit Internet, KELTEL, PAN, Warsaw, 2001, (in Polish).
  • [2] R.S. Romaniuk, DWDM, Technology, Measures, Exploitation, Development, Committee of Electronics and Telecommunication PAN (KELTEL), PAS, Warsaw, 2001, (in Polish).
  • [3] R. Romaniuk, “Optical waveguides transmission with wave multiplication – greater density or speed?”, Electronics XLV (5), 10–15 (2004), (in Polish).
  • [4] J. Wójcik, “Development of telecommunication waveguide technology in the beginning of XXI century”, Telecommunication Review and Telecommunication News 3, 135–143 (2002).
  • [5] K. J˛edrzejewski, “Bragg’s nets – a new element in the telecommunication optical waveguides”, Telecommunication Review and Telecommunication News 3, 148–152 (2002), (in Polish).
  • [6] B. Mroziewicz, “Semiconductor lasers with tuned wavelength: perspectives of application in the optical networks”, Telecommunication Review and Telecommunication News 3, 143–147 (2002), (in Polish).
  • [7] Firm materials from internet: Finisar, DiCon, Fiberoptics, Fiber-Dyne, Canoga, AFO, Fortel, Fibre-Works, Optics.org, Fibers.org.
  • [8] K. Banzuzi and D. Ungaro, “Optical links in the CMS experiment”, Proc. SPIE 5125, 101–111 (2003).
  • [9] K.T. Pozniak, M. Ptak, R.S. Romaniuk, K. Kierzkowski, I.M. Kudla, M. Pietrusinski, G. Wrochna, K. Banzuzi, and D. Ungaro, “Gigabit optical link test system for RPC muon trigger at CMS experiment”, Proc. SPIE 5125, 155–164 (2003).
  • [10] T. Czarski, R.S. Romaniuk, K.T. Pozniak, and S. Simrock, “Cavity control system essential modeling for TESLA linear accelerator”, TESLA Technical Note, DESY 06, (2003).
  • [11] T. Czarski, R.S. Romaniuk, K.T. Pozniak, and S. Simrock, “Cavity control system, models simulations for TESLA linear accelerator”, TESLA Technical Note, DESY 08, (2003).
  • [12] T. Czarski, R.S. Romaniuk, K.T. Pozniak, and S. Simrock, “Cavity control system, advanced modeling and simulation for TESLA linear accelerator”, TESLA Technical Note, DESY 09, (2003).
  • [13] K.T. Pozniak, T. Czarski and R. Romaniuk, “Functional analysis of DSP blocks in FPGA chips for application in TESLA LLRF system”, TESLA Technical Note, DESY 29, (2003).
  • [14] K. T. Pozniak, T. Czarski, and R.S. Romaniuk, “FPGA based cavity simulator and controller for TESLA test facility”, Proc. SPIE, 5775, 9–21 (2005).
  • [15] W. Koprek, P. Kaleta, J. Szewinski, K.T. Pozniak, T. Czarski, and R.S. Romaniuk, “Software layer for FPGA-based TESLA cavity control system”, Proc. SPIE 5775, 32–43 (2005).
  • [16] P. Pucyk, T. Jezynski, W. Koprek, T. Czarski, K. Pozniak, and R. Romaniuk, “DOOCS server and client application concept for FPGA based cavity controller and simulator”, Proc. SPIE 5775, 52–60 (2005).
  • [17] K.T. Pozniak, R.S. Romaniuk, T. Czarski, W. Giergusiewicz, W. Jalmuzna, K. Olowski, K. Perkuszewski, and J. Zielinski, “FPGA and optical network based LLRF distributed control system for TESLA-XFEL linear accelerator”, TESLA Report 09, (2004).
  • [18] http://www.altera.com/ [Altera Homepage]
  • [19] http://www.xilinx.com/ [Xilinx Homepage]
  • [20] W. Giergusiewicz, K. Kierzkowski, K.T. Pozniak, R.S. Romaniuk, “FPGA-based control module for x-ray fel and TESLA feedback system”, Proc. SPIE 5775, 61–68 (2005).
  • [21] http://tesla.desy.de [TESLA Home Page]; http://tesla.desy.de/LLRF/ [LLRF home page]; http://xfel.desy.de [XFEL Home Page]
  • [22] K. Czuba and H.C. Weddig, “Design considerations for the RF phase reference distribution system for X-Ray FEL and TESLA”, Proc. SPIE 5484, 148–152 (2004).
  • [23] K. Czuba, F. Eints, M. Felber, and S. Simrock, “Fiber optic link for the RF phase distribution system for the XFEL and TESLA projects”, Proc. SPIE 5775, 44–51 (2005).
  • [24] J. Frish, D. G. Brown and E. L. Cisneros, “The RF phase distribution and timing system for the NLC”, XX International Linac Conference, Monterey, California, pp. 745–747 (2000).
  • [25] http://grb.fuw.edu.pl/pi/ [“Pi-of-the-Sky” Home Page]
  • [26] A. Burd et al., “Pi of the Sky – all-sky, real-time search for fast optical transients”, New Astronomy 10 (5), 409–416 (2005).
  • [27] G. Kasprowicz, “Gigabit ethernet interface to CCD camera”, Internal Report PERG/ELHEP ISE PW 01, (2005).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0005-0047
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.