Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper investigates the minimum variance unbiased estimation (MVUE) of the reliability function R = P(Y < X) under the assumption that, both, the strength X and the stress Y are independent Gamma random variables. An approximate one- and two-sided confidence intervals for R is obtained. Some numerical results are evaluated for particular sample sizes. Also the MVUE results of this paper are compared with the results obtained by Tong [7].
Rocznik
Tom
Strony
375--381
Opis fizyczny
Bibliogr. 8 poz.
Twórcy
autor
autor
autor
- Ain Sams University, Faculty of Science, Cairo, Egypt.
Bibliografia
- [1] M. A. Beg, Estimation of Pr(Y < X) for exponential family, I Trans. Rel., 29 (1980) 158-159.
- [2] R. C. Davis, On Minimum variance in nonregular estimation, Ann. Math. Stat., 22 (1951) 43-57.
- [3] R. V. Hogg, A. T. Craig, Introduction to mathematical statistics, Macmillan, New York 1959.
- [4] A. G. Laurent, Conditional distribution of order statistics and distribution of the reduced ith order statistic of the erponential model, Ann. Math. Stat., 34 (1963) 652-657.
- [5] N. Singh, MVUE of P(X < Y) for multivariate normal populations: an application to stress-strength models, IEEE Trans. Rel., 30 (1981) 192-193.
- [6] H. Tong, A note on the estimation of P(Y < X) in the exponential case, Technometrics, 16 (1974) 625, Technometrics, 17 (1975) 395.
- [7] H. Tong, Letter to Editor, Technometrics, 17 (1975) 393.
- [8] W. A. Woodward, G. D. Kelley, Minimum variance unbiased estimation of P(Y < X) in the normal case, Technometrics, 19 (1977) 95-98.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0002-0062
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.