PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The progress of nanocrystalline hydride electrode materials

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper reviews research at the Institute of Materials Science and Engineering, Poznan University of Technology, on the synthesis of nanocrystalline hydride electrode materials. Nanocrystalline materials have been synthesized by mechanical alloying (MA) followed by annealing. Examples of the materials include TiFe-, ZrV2-, LaNi5 and Mg2Ni-type phases. Details on the process used and the enhancement of properties due to the nanoscale structures are presented. The synthesized alloys were used as negative electrode materials for Ni-MH battery. The properties of hydrogen host materials can be modified substantially by alloying to obtain the desired storage characteristics. For example, it was found that the respective replacement of Fe in TiFe by Ni and/or by Cr, Co, Mo improved not only the discharge capacity but also the cycle life these electrodes. The hydrogen storage properties of nanocrystalline ZrV 2- and LaNi5-type powders prepared by mechanical alloying and annealing show no big difference with those of melt casting (polycrystalline) alloys. On the other hand, a partial substitution of Mg by Mn or Al in Mg2Ni alloy leads to an increase in discharge capacity, at room temperature. Furthermore, the effect of the nickel and graphite coating the structure of some nanocrystalline alloys and the electrodes characteristics were investigated. In the case of Mg2Ni-type alloy mechanical coating with graphite effectively reduced the degradation rate of the studied electrode materials. The combination of a nanocrystalline TiFe-, ZrV2- and LaNi5-type hydride electrodes and a nickel positive electrode to form a Ni-MH battery, has been successful.
Rocznik
Strony
67--77
Opis fizyczny
Bibliogr. 51 poz., 10 rys., 1 tab.
Twórcy
autor
  • Institute of Materials Science and Engineering, Poznan University of Technology, Sklodowska-Curie 5 Sq., 60-965 Poznan, Poland
  • Institute of Materials Science and Engineering, Poznan University of Technology, Sklodowska-Curie 5 Sq., 60-965 Poznan, Poland, jurczyk@sol.put.poznan.pl
Bibliografia
  • [1] G. Sandrock, “A panoramic overview of hydrogen storage alloys from a gas reaction point of view”, J. Alloys Comp. 293–295, 877–888 (1999).
  • [2] A. Anani, A. Visintin, K. Petrov, S. Srinivasan, J. J. Reilly, J. R. Johnson, R. B. Schwarz and P. B. Desch, “Alloys for hydrogen storage in nickel/hydrogen and nickel/metal hydride batteries”, J. Power Sources 47, 261–275 (1994).
  • [3] J. Kleparis, G. Wojcik, A. Czerwinski, J. Skowronski, M. Kopczyk and M. Beltowska-Brzezinska, “Electrochemical behavior of metal hydrides”, J. Solid State Electrochem. 5, 229–249 (2001).
  • [4] M. Jurczyk, “Nanocrystalline metal hydride electrode materials”, Current Topics in Electrochem. 9, 105–116 (2003).
  • [5] M. Jurczyk, L. Smardz, M. Makowiecka, E. Jankowska and K. Smardz, “The synthesis and properties of nanocrystalline electrode materials by mechanical alloying”, J. Phys. Chem. Sol. 65, 545–548 (2004).
  • [6] K. H. J. Bu schow, P. C. P. Bou ten and A. R. Miedema, “Hydrides formed from intermetallic compounds of two transition metals: a special class of ternary alloys”, Rep. Prog. Phys. 45, 937–1039 (1982).
  • [7] K. Hong, “The development of hydrogen storage alloys and the progress of nickel hydride batteries”, J. Alloys Comp. 321, 307–313 (2001).
  • [8] M. Jurczyk, W. Rajewski, G. Wojcik and W. Majchrzycki, “Metal hydride electrodes prepared by mechanical alloying of ZrV2-type materials”, J. Alloys Comp. 285, 250–254 (1999).
  • [9] M. Jurczyk, W. Rajewski, W. Majchrzycki and G. Wojcik, “Synthesis and electrochemical properties of high energy ball milled Laves phase (Zr,Ti)(V,Mn,Cr)2 alloys with nickel powder”, J. Alloys Comp. 274, 299–302 (1998).
  • [10] T. Sakai, M. Matsuoka and C. Iwakura, in: Handbook on the Physics and Chemistry of Rare Earth, Vol. 21, Chapter 142, K.A. Gschneider Jr., L. Eyring (Eds.), Amsterdam: Elsevier Science B.V., 1995.
  • [11] L. Zaluski, A. Zaluska and J. O. Str¨om-Olsen, “Nanocrystalline metal hydrides”, J. Alloys Comp. 253-254, 70–79 (1997).
  • [12] S. Orimo, A. Zttel, K. Ikeda, S. Saruki, T. Fukunaga, H. Fujii and L. Schlapbach, “Hydriding properties of the MgNi-based systems”, J. Alloys Comp. 293-295, 437–442 (1999).
  • [13] A. Gasiorowski, W. Iwasieczko, D. Skoryna, H. Drulis and M. Jurczyk, “Hydriding properties of nanocrystalline Mg2−xMxNi alloys synthesised by mechanical alloying (M = Mn, Al)”, J. Alloys Comp. 364, 283–288 (2004).
  • [14] G. Giang, J. Huot and R. Scultz, “Hydrogen storage properties of the mechanically alloyed LaNi5-based materials”, J. Alloys Comp. 320, 133–139 (2001).
  • [15] J. S. Benjamin, “Mechanical alloying”, Sc. American. 234, 40–57 (1976).
  • [16] C. Suryanarayna, “Mechanical alloying”, Progr. Mater. Sc. 46, 1–184 (2001).
  • [17] W. Majchrzycki and M. Jurczyk, “Electrode characteristics of nanocrystalline (Zr,Ti)(V,Cr,Ni)2.41 compound”, J. Power Sources 93, 77–81 (2001).
  • [18] E. Jankowska and M. Jurczyk, “Electrochemical behaviour of high-energy ball-milled TiFe alloy”, J. Alloys Comp. 346, L1–L3 (2002).
  • [19] M. Jurczyk, E. Jankowska, M. Nowak and I. Wieczorek, “Electrode characteristics of nanocrystalline TiFe-type alloys”, J. Alloys Comp. 354, L1–L4 (2003).
  • [20] M. Jurczyk, E. Jankowska, M. Nowak and J. Jakubowicz, “Nanocrystalline titanium type metal hydrides prepared by mechanical alloying”, J. Alloys Comp. 336, 265–269 (2002).
  • [21] M. Jurczyk, K. Smardz, W. Rajewski and L. Smardz, “Nanocrystalline LaNi4.2Al0.8 prepared by mechanical alloying and annealing and its hydride formation”, Mater. Sc. Eng. A303, 70–76 (2001).
  • [22] M. Jurczyk, M. Nowak, E. Jankowska and J. Jakubowicz, “Structure and electrochemical properties of the mechanically alloyed La(Ni,M)5 materials”, J. Alloys Comp. 339, 339–343 (2002).
  • [23] L. Smardz. K. Smardz, M. Nowak and M. Jurczyk, “Structure and electronic properties of La(Ni,Al)5 alloys”, Cryst. Res. & Technology 36, 1385–1392 (2001).
  • [24] M. Jurczyk, L. Smardz, K. Smardz, M. Nowak and E. Jankowska, “Nanocrystalline LaNi5-type electrode materials for Ni-MHx batteries”, J. Solid State Chem. 171, 30–37 (2003).
  • [25] M. Jurczyk, L. Smardz and A. Szajek, “Nanocrystalline materials for NiMH batteries”, Mat. Sc. Eng. B 108, 67–75 (2004).
  • [26] M. Kopczyk, G. Wojcik, G. Mlynarek, A. Sierczynska and M. Beltowska-Brzezinska, “Electrochemical absorption-desorption of hydrogen on multicomponent Zr-Ti-V-Ni-Cr-Fe alloys in alkaline solution”, J. Appl. Electrochem. 26, 639–645 (1996).
  • [27] M. Jurczyk, M. Nowak and E. Jankowska, “Nanocrystalline LaNi4−xMn0.75Al0.25Cox electrode materials produced by mechanical alloying”, J. Alloys Comp. 340, 281–285 (2002).
  • [28] C. Iwakura, K. Fukuda, H. Senoh, H. Inoue, M. Matsuoka and Y. Yamamoto, “Electrochemical characterization of MmNi4.0−xMn0.75Al0.25Cox electrodes as a function of cobalt content”, Electrochim. Acta 43, 2041–2046 (1998).
  • [29] L. Aymard, M. Ichitsu bo, K. Uchida, E. Sekreta and F. Ikazaki, “Preparation of Mg2Ni base alloy by the combination of mechanical alloying and heat treatment at low temperature”, J. Alloys Comp. 259, L5–L8 (1997).
  • [30] G. Ling, S. Boily, J. Hu ot, A. Van Neste and R. Schu ltz, “Hydrogen absorption properties on a mechanically milled Mg-50 wt.% LaNi5 composite”, J. Alloys Comp. 268, 302–307 (1998).
  • [31] D. Mu, Y. Hatano, T. Abe and K. Watanabe, “Degradation kinetics of discharge capacity for amorphous Mg–Ni electrode”, J. Alloys Comp. 334, 232–237 (2002).
  • 32] S. Bouaricha, J. P. Dodelet, D. Guay, J. Huot and R. Schultz, “Activation characteristics of graphite modified hydrogen absorbing materials”, J. Alloys Comp. 325, 245–251 (2001).
  • [33] J. Chen, D. H. Bradhurst, S. X. Don and H. K. Liu, “The effect of chemical coating with Ni on the electrode properties of Mg2Ni alloys”, J. Alloys Comp. 280, 290–293 (1998).
  • [34] M. Jurczyk, “Nanostructured electrode materials for Ni-MHx batteries prepared by mechanical alloying”, J. Mater. Science (2004), to be published.
  • [35] M. Makowiecka, D. Skoryna and M. Jurczyk, “Nanocrystalline TiNi-type electrode materials for Ni-MH batteries”, Inżynieria Materiałowa (2004), to be published.
  • [36] C. Iwakura, H. Inoue, S. G. Zhang and S. Nohara, “A new electrode material for nickel-metal hydride batteries: MgNi–graphite composites prepared by ball-milling”, J. Alloys Comp. (293–295), 653–657 (1999).
  • [37] M. Gupta, “Electronic structure of TiFeH”, J. Phys. F: Metal Phys. 12, L57–62 (1982).
  • [38] G. N. Garcia, J. P. Abriata and J. O. Sofo, “Calculation of the electronic and structural properties of cubic Mg2NiH4”, Phys. Rev. B59, 11746–11754 (1999).
  • [39] A. Szajek, M. Jurczyk and E. Jankowska, “The electronic and electrochemical properties of the TiFe-based alloys”, J. Alloys Comp. 348, 285–292 (2003).
  • [40] K. Smardz, L. Smardz, M. Jurczyk and E. Jankowska, “Electronic properties of nanocrystalline and polycrystalline TiFe0.25Ni0.75 alloys”, Phys. Stat. Sol. (a) 196, 263–266 (2003).
  • [41] A. Szajek, M. Jurczyk and E. Jankowska, “The electronic and electrochemical properties of the TiFe1−xNix alloys”, Phys. Stat. Sol. 196, 256–259 (2003).
  • [42] A. Szajek, M. Jurczyk and W. Rajewski, “The electronic and electrochemical properties of the ZrV2 and Zr(V0.75Ni0.25)2 systems”, J. Alloys Comp. 302, 299–303 (2000).
  • [43] A. Szajek, M. Jurczyk and W. Rajewski, “The electronic structure and electrochemical properties of the LaNi5, LaNi4Al and LaNi3AlCo systems”, J. Alloys Comp. 307, 290–296 (2000).
  • [44] L. Smardz, K. Smardz, M. Nowak and M. Jurczyk, “Structure and electronic properties of La(Ni,Al)5 alloys”, Cryst. Res. & Techn. 36, 1385–1392 (2001).
  • [45] A. Szajek, M. Jurczyk, M. Nowak and M. Makowiecka, “The electronic and electrochemical properties of the LaNi5-based alloys”, Phys. Stat. Sol. (a) 196, 252–255 (2003).
  • [46] R. Griessen, “Heats of solution and lattice-expansion and trapping energies of hydrogen in transition metals”, Phys. Rev. B38, 3690–3698 (1988).
  • [47] P. C. Bouten and A. R. Miedema, “On the heats of formation of the binary hydrides of transition metals”, J. Less Common Metals 71, 147–151 (1980).
  • [48] J. M. Joubert, M. Latroche, A. Percheron-Gu´egan and F. B. Bour´ee-Vigueron, “Thermodynamic and structural comparison between two potential metal-hydride battery materials LaNi3.55Mn0.4Al0.3Co0.75 and CeNi3.55Mn0.4Al0.3Co0.75”, J. Alloys Comp. (275–277), 118–122 (1998).
  • [49] E. Jankowska and M. Jurczyk, “Electrochemical properties of sealed Ni-MH batteries using nanocrystalline TiFe-type anodes”, J. Alloys Comp. 372, L9–L12 (2004).
  • [50] J. M. Skowronski, A. Sierczynska and M. Kopczyk, “Investigation of the influence of nickel content on the correlation between the hydrogen equilibrium pressure for hydrogen absorbing alloy and the capacity of MH electrodes in open and closed cells”, J. Solid State Electrochem. 7, 11–16 (2002).
  • [51] unpublished results
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0001-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.