PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preconditioning of voxel FEM elliptic systems

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The presented comparative analysis concerns two iterative solvers for large-scale linear systems related to žFEM simulation of human bones. The considered scalar elliptic problems represent the strongly heterogeneous structure of real bone specimens. The voxel data are obtained with high resolution computer tomography. Non-conforming Rannacher-Turek finite elements are used to discretize of the considered elliptic problem. The preconditioned conjugate gradient method is known to be the best tool for efficient solution of large-scale symmetric systems with sparse positive definite matrices. Here, the performance of two preconditioners is studied, namely modified incomplete Cholesky factorization, MIC(0), and algebraic multigrid. The comparative analysis is mostly based on the computing times to run the sequential codes. The number of iterations for both preconditioners is also discussed. Finally, numerical tests of a novel parallel MIC(0) code are presented. The obtained parallel speed-ups and efficiencies illustrate the scope of efficient applications for real-life large-scale problems.
Słowa kluczowe
EN
Rocznik
Strony
117--128
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
autor
  • Institute for Parallel Processing, Bulgarian Academy of Sciences, Acad. G. Bonchev, bl. 25A, 1113 Sofia, Bulgaria, margenov@parallel.bas.bg
Bibliografia
  • [1] 2004 ABAQUS Technology Brief, TB-O3-HTB-l
  • [2] Axelsson O 1994 Iterative Solution Methods, Cambridge University Press, Cambridge
  • [3] Rannacher R and Turek S 1992 Numer. Methods Partial Differential Equations 8 (2) 97
  • [4] Arnold D N and Brezzi F 1985 RAIRO Model. Math. Anal. Numer. 19 7
  • [5] Bencheva G and Margenov S 2003 J. Comput. Appl. Mech. 4 (2) 105
  • [6] Braess D 1997 Finite Elements. Theory, Fast Solvers, and Applications in Solid Mechanics, Cambridge University Press
  • [7] Gustafsson I 1983 Preconditioning Methods; Theory and Applications (Evans D J, Ed.), Gordon and Breach, pp. 265-293
  • [8] Gustafsson I and Lindskog G 1998 Numer. Linear Algebra Appl. 5 (2) 123
  • [9] Gustafsson I 1979 Stability and Rate of Convergence of Modified Incomplete Cholesky Factorization Methods, Chalmers University of Technology, Report No. 79.02R [10] Blaheta R 1994 Numer. Linear Algebra Appl. 1 107
  • [11] Ruge J W and Stüben K 1987 Frontiers in Applied Mathematics (McCormick S F, Ed.), SIAM, Philadelphia, FA, 3, pp. 73-130
  • [12] Henson V E and Yang U M 2002 Appl. Num. Math. 41 (5) 155 (also available as LLNL Technical Report UCRL-JC-141495)
  • [13] Yang U M 2005 Numerical Solution of Partial Differential Equations on Parallel Computers (Bruaset A M and Tveito A, Eds), Springer-Verlag, pp. 209-236 (also available as LLNL Technical Report UCRL-BOOK-208032)
  • [14] Arbenz P, van Lenthe G H, Mennel U, Müller Rand gala M 2006 A scalable Multi-level Preconditioner for Matrix-free M-Finite Element Analysis of Human Bone Structures, Institute of Computational Science, ETH Zurich, Technical Report 543
  • [15] Arbenz P and Margenov S 2004 Proc. IMET Conf., Prague, Czech Republic, pp. 12-15
  • [16] Arbenz P, Margenov S and Vutov Y 2007 Comput. Math. Appl. (to appear)
  • [17] Vutov Y 2007 Lecture Notes in Computer Science, NMA 2006, Borovets, Bulgaria, 4310 114
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG4-0035-0054
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.