PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Ion exchange in lichen surrounding

Identyfikatory
Warianty tytułu
PL
Wymiana jonowa w układzie porost-otoczenie przyrodnicze
Konferencja
Środkowo-europejska Konferencja ECOpole '07 (18-20.10.2007 ; Duszniki Zdrój, Polska)
Języki publikacji
EN
Abstrakty
EN
Results of the research on heterophase equilibria (aqueous solution-the lichen cationactive layer) of exchange of copper ion for the cations naturally found in the environment (H+, Na+, K+, Mg2+ and Ca2+) have been presented, assessing in this way the influence of above-mentioned cations on sorption of heavy metals by lichens. Such processes occur in the lichen natural environment and they influence the reliability of heavy metals determination by measuring the metals accumulation in lichens. Kinetics and equilibria of (he ion exchange have been investigated through analysis of changes in parameters of different solutions, including deionized water and various solutions being in contact with lichens. The reliability of different lichen monitoring methods and the role of cationactive layer as a buffer zone have been discussed. The research has shown that heavy metals sorption is significantly influenced by the type and concentration of cations present in precipitation with which lichens are in contact. These cations originate, among others, from the substratum that lichens grow on and dust accumulated on their surface. Measurements of changes in conductivity and pH value of solutions which lichens were submerged in constituted an important part of the research. On the basis of these measurements, the reasons behind changes in conductivity of deionized water that lichens were dipped in were discussed. Hypogymnia physodes lichens were used in the study.
PL
Przedstawiono wyniki badań równowag heterofazowych (roztwór wodny - kationoaktywna warstwa porostów) wymiany kationów naturalnie występujących w środowisku: H+, Na+, K+, Mg2+ i Ca2+ i jonów miedzi, co pozwala na ocenę wpływu tych kationów na sorpcję metali ciężkich przez porosty. Takie zależności występują w naturalnym środowisku porostów i są jednym z czynników wpływających na miarodajność oceny zanieczyszczenia środowiska na podstawie badań rodzaju i stężenia metali ciężkich zasorbowanych przez porosty. Kinetykę i równowagi procesów wymiany jonowej badano poprzez pomiary zmian parametrów różnych roztworów, a także wody zdemineralizowanej, po zanurzeniu w nich porostów. Uzyskane wyniki wskazują na rolę warstwy kationoaktywnej jako czynnika buforującego. Wykazano, że duży wpływ na sorpcję metali ciężkich ma rodzaj i stężenie kationów zawartych w opadach, z którymi porosty mają kontakt. Kationy te pochodzą m.in. z podłoża, na którym rosną porosty oraz z pyłów nagromadzonych na ich powierzchni. Ważnym elementem badań były pomiary zmian konduktywności i pH roztworów, w których zanurzano porosty. Na ich podstawie zinterpretowano przyczyny zmian konduktywności wody zdemineralizowanej po zanurzeniu w niej porostów. Badania prowadzono dla porostów Hypogymnia physodes.
Rocznik
Strony
645--667
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
autor
autor
autor
  • Chair of Biotechnology and Molecular Biology, Opole University, uL Kard. B. Kominka 4, 45-032 Opole, aklos@uni.opole.pl
Bibliografia
  • [1] Kłos A., Rajfur M., Wacławek M. and Wacławek W.: Ion exchange kinetics in lichen environment, Ecol. Chem. Eng., 2005, 12, 1353-1365.
  • [2] Schwartzman D.W., Stieff L., Kasim M., Kombe E., Aung S., Atekwana E., Johnson J. and Schwartzman K.: An ion-exchange model of lead-210 and lead uptake in a foliose lichen; application to guantitative monitoring of airborne lead fallout, Sci. Total Environ., 1991, 100, 319-336.
  • [3] Gadd G.M.: Interaction of fungi with toxic metals, New Phytol., 1993, 124, 25-60.
  • [4] Hauck M., Mulack C. and Paul A.: Manganese uptake in the epiphytic lichens Hypogymnia physodes and Lecanora conizaeoides, Environ. Exp. Bot., 2002, 48, 107-117.
  • [5] Brown, D.H. and Brown R.M.: Mineral cycling and lichens: the physiological basis, Lichenologist, 1991, 23, 293-307.
  • [6] Nedič O., Stankovič A. and Stankovič A.L.: Organic cesium carrier(s) in lichen, Sci. Total Environ., 1999, 227, 93-100.
  • [7] Takani M., Yajima T., Masuda H. and Yamauchi O.: Spectroscopic and structural characterization of copper(II) and palladium(II) complexes of a lichen substance usnic acid and its derivatives. Possible forms of environmental metals retained in lichens, J. Inorg. Biochem., 2002, 91, 139-150.
  • [8] Figueira R., Pacheco A.M.G., Sousa A.J. and Catarino F.: Development and calibration of epiphytic lichens as saltfall biomonitors, in Proc. of the Internacional Workshop in Biomonitoring of atmospheric pollution - BioMAP II, 28 August - 3 September 2000, Vienna 2003, pp. 152-159.
  • [9] Richardson D.H.S., Nieboer E., Lavoie P. and Padovan D.: Anion accumulation by lichens. I. The characteristics and kinetics of arsenate uptake by Umbiricalia muhlenbergii, N. Phytol. 1984, 96, 71-82.
  • [10] Freitas M.C., Reis M.A., Marques A.P. and Wolterbeek H.Th.: Use of lichen transplants in atmospheric deposition studies, J. Radioanal. Nucl. Chem., 2001, 249(2), 307-315.
  • [11] Outola L: Effect of industrial pollution on the distribution of Pu and Am in soil and on soil-to-plant transfer of Pu and Am in a pine forest in SW Finland, J. Radioanal. Nucl. Chem., 2003, 257(2), 267-274.
  • [12] Kłos A., Rajfur M., Wacławek M. and Wacławek W.: Lichen application for assessing environmental pollution with radionuclides, Chem. Inż. Ekol., 2004, 11(12), 1323-1332.
  • [13] Clark B.M., Mangelson N.F., St. Clair L.L., Gardner J.S. Cooper L.S., Rees L.B., Grant P.G. and Bench G.S.: Analysis of lichen thin sections by PIXE and STIM using a proton microprobe, Nucl. Inst. Meth. Phys. Res., 1999, B150 148-253.
  • [14] Budka D., Przybyłowicz W.J., Mesjasz-Przybyłowicz J. and Sawicka-Kapusta, K.: Elemental distribution in lichens transplanted to polluted forest sites near Kraków (Poland), Nucl. Ins. Meth. Phys. Res., 2002, B189, 499-505.
  • [15] Conti M.E. and Cecchetti G.: Biological monitoring: lichens as bioindicators of air pollution assessment - a review, Environ. Pollut., 2001, 114, 471-492.
  • [16] Hauck M.: Epiphytic lichen diversity on dead and dying conifers under different of atmospheric pollution, Environ. Pollut., 2005, 135, ll1-119.
  • [17] Seaward M.R.D.: Biomonitors of environmental pollution: an appraisal of their effectiveness, [in:] Proc. XIV Central European Conference ECOpole'05, 20-22.10.2005, Jamrozowa Polana, Opole 2005, pp. 253-256.
  • [18] Chettri M.K., Sawidis T., Zachariadis G.A. and Stratis I.A.: Uptake of heavy metals by living and dead Cladonia thalli, Environ. Exp. Bot., 1997, 37, 39-52.
  • [19] Tarhanen S.: Ultrastructural responses of the lichen Bryoria fuscescens to simulated acid rain and heavy metal deposition, Ann. Bot., 1998, 82, 735-746.
  • [20] Haas J.R., Bailey E.H. and Purvis O.W.: Bioaccumulation of metals by lichens: Uptake of aqueous uranium by Peltigera membranacea as of function of time and pH, Americ. Mineral., 1998, 83, 1494-1502.
  • [21] Pipiška M., Hornik M., Kočiova M., Augustin J. and Lesny J.: Radiostrontium uptake by lichen Hypogymnia physodes, Nukleonica, 2005, 50(1), 39-44.
  • [22] Schmull M. and Hauck, M.: Extraction methods for assessing the availability of cations for epiphytic lichens from bark, Environ. Exp. Bot., 2003, 49, 273-283.
  • [23] Saiki M., Horimoto L.K., Vasconcellos M.B.A. and Marcelli M.P.: Substrate influence on elemental composition of canoparmelia texana lichenized fungi, [in:] Proc. of the Internacional Workshop in Biomonitoring of atmospheric pollution - BioMAP II, 28 August - 3 September 2000, Vienna 2003, pp. 271-277.
  • [24] Hyvärinen By M. and Crittenden P.D.: Cation ratios in Cladonia portentosa as indices of precipitation acidity in the British Isles, New Phytol., 1996, 132, 521-532.
  • [25] Garty J., Steinberger Y. and Harel Y.: Spatial and temporal changes in the concentration of K, Na, Mg and Ca in epilithic and in decomposing detached thalli of the lichen Ramalina maciformis and its potential role in the cycling of these elements in the Negev Desert, Environ. Exp. Bot., 1996, 36, 83-97.
  • [26] Garty J., Kloog N. and Cohen Y.: Integrity of Lichen Cell Membranes in Relation to Concentration of Airborne Elements, Arch. Environ. Contam. Toxicol., 1998, 34, 136-144.
  • [27] Garty J., Weissman L., Cohen Y., Karnieli A. and Orlovsky L.: Transplanted Lichens in and around the Mount Carmel National Park and the Haifa Bay Industrial Region in Israel: Physiological and Chemical Responses, Environ. Res. Sect., 2001, A85, 159-176.
  • [28] Garty J., Tomer S., Levin T. and Lehr H.: Lichens as biomonitors around a coal-fired power station in Israel, Environ. Res., 2003, 91, 186-198.
  • [29] Hauck M. and Gross S.: Potassium uptake in the epiphytic lichen Hypogymnia physodes al concentrations and pH conditions as found in stemflow, Flora, 2003, 198, 127-131.
  • [30] Tarhanen S., Metsarinne S., Holopainen T. and Oksanen J.: Membrane permeability response of lichen Bryoria fuscescens to wet deposited heavy metals and acid rain, Environ. Pollut., 1999, 104, 121-129.
  • [31] Garty J. and Amman K.: The amounts of Ni, Cr, Zn, Pb, Cu, Fe and Mn in some lichens growing in Switzerland, Environ. Exp. Bot., 1987, 27, 127-138.
  • [32] Jeran Z., Jaćimovič R., Smodiš B. and Batič F. Epiphytic lichens as quantitative biomonitors for atmospheric element deposition, [in:] Proc. of the Internacional Workshop in Biomonitoring of atmospheric pollution - BioMAP, 21-24 September 1997, Vienna 2000, pp. 22-28.
  • [33] Horvat M., Jeran Z., Špińč Z., Jaćimović R. and Miklavčič V.: Mercury and other elements in lichens near the INA Naftaplin gas treatment plant, Molve, Croatia, J. Environ. Monit., 2000, 2, 139-144.
  • [34] Marques A.S., Freitas M.C., Reis M.A., Wolterbeek H.Th. and Verburg T.: MCTTFA applied to differential biomonitoring in Sado estuary region, J. Radioanal. Nucl. Chem., 2004, 259(1), 35-40.
  • [35] Kłos A., Rajfur M., Wacławek W. and Wacławek M.: Influence of abiotic factors on heavy metal sorption in lichens, Ann. Polish Chem. Soc., 2005, 2, 173-176.
  • [36] Branquinho C., Brown D.H. and Catarino F.: The cellular location of Cu in lichens and is effects on membrane integrity and chlorophyll fluorescence, Environ. Exp. Bot. 1997, 38, 165-179.
  • [37] Ohnuki T., Sakamoto F., Kozai N., Sakai T., Kamiya T., Satoh T. and Oikawa M.: Micro-pixe study on sorption behaviors of cobalt by lichen biomass, Nucl. Instr. Meth. Phys. Res., 2003, B210, 407-411.
  • [38] Kłos A., Rajfur M., Wacławek W. and Wacławek M.: Heavy metal sorption in the lichen cationactive layer, Bioelectrochemistry, 2007, 71, 60-65.
  • [39] Balarama Krishna M.V. and Arunachalam J.: Ultrasound-assisted extraction procedure for the fast estimation of major, minor and trace elements in lichen and mussel samples by ICP-MS and ICP-AES, Anal. Chim. Act., 2004, 522, 179-187.
  • [40] Kłos A., Rajfur M., Wacławek M. and Wacławek W.: Ion equilibrium in lichen surrounding, Bioelectrochemistry, 2005, 66, 95-103.
  • [41] Kłos A., Rajfur M., Wacławek M. and Wacławek W.: Determination of the atmospheric precipitation pH value on the basis of the analysis of lichen cationactive layer constitution, Electrochim. Act., 2006, 51(24), 5053-5061.
  • [42] Kłos A., Rajfur M., Wacławek M. and Wacławek W.: Application of lichen for the determination of precipitation pH by the exposure method, [in:] Pawłowski L., Dudzińska M.R. and Pawłowski A.: Environmental Engineering, 507-513, Taylor & Francis, London 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG4-0031-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.