PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structure formation of NiTi alloys for superelastic medical implants

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The basic assumption of this work was to achieve superelastic behaviour of implants used for bone distraction for correction maxillofacial and craniofacial deformities. This paper describes two possibilities of inducing superelastic behaviour of spring implants used for children cranial correction. The first one is based on the usage of straight wires for [omega] and U-shape spring formation. The superelasticity is induced to the wires by a proper cold deformation and annealing below the recrystallization temperature. Dislocation cells and low angle grain boundaries are characteristic for these wires. The second possibility of the superelasticity induction into ring springs is based on precipitation hardening. For this purpose an alloy with higher amount of nickel (51 %at.) was used at which precipitation of coherent particles of Ni4Ti3 leads to the matrix hardening and allows to achieve a distinguish stress plateau on the stress-strain curve. The obtained implants have shown their usefulness in clinical applications.
Rocznik
Strony
71--79
Opis fizyczny
Bibliogr. 11 poz., rys., tab.
Twórcy
autor
autor
autor
  • University of Silesia, Institute of Materials Science, Katowice, Poland
Bibliografia
  • 1. Poncet P. P.: Nitinol medical device design considerations. Proceedings of the International. Conference on Shape Memory and Superelastic Technologies California 2000, pp. 441-455.
  • 2. Pelton A. R., Stockel D., Duerig T. W.: Medical uses of NiTinol. Materials Science Forum 327-328 (2000), pp. 63-70.
  • 3. Idelsohn S., Pena S, Lacroix D, Planell S. A., Gil F. S.: Continous mandibular distraction osteogenesis using superelastic shape memory alloy (SMA). J. Mater. Sci.: Materials in Medicine 15 (2004), pp. 541-546.
  • 4. Duerig T. W., Zadno R.: An engineers perspective of pseudoelasticity. Engineering Aspect of Shape Memory Alloys, London 1990, pp. 369-393.
  • 5. Lekston Z, Drugacz J, Morawiec H.: Application of superelastic NiTi wires for mandibular distraction. Materials Science and Engineering A 378 (2004), pp. 537-541.
  • 6. Li D. Y., Chen L. Q.: Shape of rhombohedral coherent T11Ni14 precipitate ina cubic matrix and its growth and dissolution during constrained ageing. Acta Mater. 45 (1997), pp. 2435-2442.
  • 7. Tirry W., Schryvers: Quantitative determination of strain fields around Ni4Ti3 precipitates in NiTi. Acta Materialia 53 (2005), pp. 1041-1049.
  • 8. Chumlyakov Yu. I., Kireeva 1. V., Litviniva E. L, Lisyuk A. G.: Superelasticity during the elastic twinning, slip and martensitic transformation.Proceed. of Second International Conf. on Shape Memory and Superelastic Technologies, California, 1997, pp. 29-34.
  • 9. Chumlyakov Yu. L, Kireeva 1. V., Lysyuk A. G.,. Zuev Yu. L.: Superelasticity and shape-memory effects in Ti-Ni single crystal. Proceed. of Second International Conf. on Shape Memory and Superelastic Technologies, California, 1997, pp. 7-12.
  • 10. Pelton A. R., DiCello J., Miyazaki S.: Optimization of processing and properties of medical-grade Nitinol wire. Min Invas Ther & Allied Technol. 9 (1) (2000), pp. 107-118.
  • 11. Morawiec H., Lekston Z., Kobus K., Węgrzyn M., Drugacz J.: Superelastic NiTi springs for corrective skull operations in children with craniosynostosis. J. Mater. Sci. - in press.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG4-0028-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.