PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Environmental significance of aqueous-phase reactions of atmospheric organic trace-compounds

Identyfikatory
Warianty tytułu
PL
Znaczenie reakcji organicznych śladowych składników atmosfery w fazie wodnej dla środowiska
Języki publikacji
EN
Abstrakty
EN
The Earth atmosphere contains an enormous number of organic trace-compounds, which are involved in very complex chemical transformation. The gas-phase reactions of organic compounds have been studied for years, while recently growing attention bas been paid to the reactions proceeding in the aqueous phase or heterogeneously. This work reviews the aqueous-phase reactions of selected organic compounds alcohols, carboxylic acids, substituted phenols, carbon-sulphur compounds and terpenes - with atmospheric radicals (OH, NO3 and SOx) and discusses their role in atmospheric transformation and potential contribution to the formation of secondary organic aerosols (SOA). The laboratory work aimed at the determination of individual rate constants and formulation of the chemical mechanisms involved is presented, mostly for the reactions with sulphoxy radicals. Finally, possible environmental il11plications of presented reactions are brief1y addressed, with special attention pa id to the condition of the biosphere and human health.
PL
Atmosfera Ziemi zawiera ogromną liczbę śladowych składników organicznych, które podlegają bardzo złożonym przemianom chemicznym. Reakcje związków organicznych w fazie gazowej badane są od wielu lat, natomiast reakcje w fazie ciekłej stały się przedmiotem zainteresowania dopiero od niedawna. Niniejsza praca przedstawia reakcje wybranych związków organicznych - alkoholi, kwasów karboksylowych, podstawionych fenoli, organicznych związków siarki i terpenów - z rodnikami występującymi w atmosferze (OH, NO3 i SO,-) oraz omawia ich znaczenie w procesach atmosferycznych i potencjalny udział w tworzeniu wtórnych aerozoli atmosferycznych. Pokazuje także prace laboratoryjne mające na celu wyznaczenie stałych szybkości oraz wyjaśnienie mechanizmu chemicznego poszczególnych reakcji, zwłaszcza reakcji z udziałem rodników siarkotlenowych. Na zakończenie praca omawia pokrótce możliwy wpływ przedstawionych reakcji na środowisko, ze szczególnym uwzględnieniem stanu biosfery i zdrowia człowieka.
Rocznik
Strony
1313--1324
Opis fizyczny
Bibliogr. 47 poz., 3 rys., 5 tab.
Twórcy
  • Department of Catalysis on Metals, Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa
autor
  • Department of Catalysis on Metals, Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa
  • Department of Catalysis on Metals, Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, kjrudz@iehf.edu.pl
Bibliografia
  • [1] Sander R.: The volume ofthe solution is l kg: pleadingfor scientific writing. EOS, Transactions, AGU 2000, 81, 1.
  • [2] Ehhalt D.H.: Gas phase chemistry of the troposphere, [in:] Global aspects of atmospheric chemistry, Zel-Iner R. (ed.), Steinkopf, Darmstadt 1999.
  • [3] Georgii H.W. and Warneck P.: Chemistry of the tropnspheric aerosol and ofcloitds, [in:] Global aspects of atmospheric chemistry; Zellner R. (ed.), Steinkopf, Darmstadt 1999.
  • [4] Warneck P.: Fundamentals, [in:] Global aspects of atmospheric chemistry; Zellner R. (ed.), Steinkopf, Darmstadt 1999.
  • [5] United Nations Environment Programme: Geo Yearbook 2004/2005; Interprint Ltd., Malta 2005, www.unep.org/geo/yearbook.
  • [6] Kcsselmeier J. and Staudt M.: Biogenic volatile organie compounds (VOC): An overview on emission, physiology and ecology. J. Atmos. Chem. 1999, 33, 23-88.
  • [7] Seinfcld J.H. and Pandis S.N.: Atmospheric chemistry and physics, John Wiley & Sons, New York 1998.
  • [8] Stern D.I.: Global sulfur emissions from 1850 to 2000. Chemosphere 2005, 58, 163-175.
  • [9] Guenther A., Karl T., Harley P., Wiedintnyer C., Palmer P.l. and Geron C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Naturę). Atmos. Chem. Phys. Discuss. 2006, 6, 107-173, SRef-lD: 1680-7375/acpd/2006-6-107.
  • [10] Liss P.S., Hatton A.D., Malin G., Nightingale P.D. and Turner S.M.: Marine sulphur emissions. Phil. Trans. R. Soc. Lond. B 1997, 352, 159-169.
  • [11] Hobbs P. and Mottram T.: New Directions: Significant contributions ofdimethyl sulphidefrom livestock to the atmosphere. Atmos. Environ. 2000, 34, 3649-3650.
  • [12] Matsunaga S., Mochida M., Saito T., and Kawamura K.: In situ measurement ofisoprene in the marine air and surface seawater from the western North Pacific. Atmos. Environ. 2002, 36, 6051—6057.
  • [13] Lindinger W., Hansel A. and Jordan A.: Proton-transfer-reaction mass spectrometry (PTR-MS) on-line monitoring of volatile organic compounds at pptv levels. Chem. Soc. Revs 1998, 27, 347—354.
  • [14] Leber A.P.: Overview ofisoprene monomer and polyisoprene production processes. Chem.-Biol. Interact. 2001, 135-136, 169-173.
  • [15] Berresheim H., Winę P.H. and Davis D.D.: Sulfur in the environment, [in:] Composition, chemistry, and climate of the atmosphere, Singh li.B. (ed.), Van Nostrand Reinhold, New York 1995.
  • [16] JacobD.J.: Helerogeneous chemistry and tropospheric ozone. Atmos. Environ. 2000, 34, 2131-2159.
  • [17] Neppel L., Desbordes M. and Masson J.M.: Spatial extension of extreme rainfall events: returnperiod of isohyets area and influence of rain gauges network evolution. Atmos. Res. 1997, 45, 183-199.
  • [18] Ervens B., George C„ Williams J. E., Buxton G.V., Salmon G.A., Bydder M„ Wilkinson F„ Dentener F., Mirabel P., Wolke R., and Hernnann H.: CAPRAM2.4 (MODAC mechanism): An extended and condensedtropospheric aąueousphase mechanism andits application. J. Geophys. Res. 2003, 108, D14, 4426.
  • [19] Zhu L., Nicovich J.M. and Wine P.H.: Temperature-dependent kinetics studies of aqueous phase reactions of SO4- radicals with dimethylsulfoxide, dimethytsulfone, and methanesulfonate. J. Photochem. Photobiol. A: Chem. 2003, 157, 311-319.
  • [20] Hernnann H.: Kinetics of aqueous phase reactions relevant for atmospheric chemistry. Chem. Rev. 2003, 103, 4691-4716.
  • [21] IUPAC Subcommittee for Gas Kinetic Data Evaluation: Evaluated kinetic data. http://www.iupac-kine-tic.ch.cam.ac.uk, accessed on 30th Nov. 2005.
  • [22] Master Chemical Mechanism 3.1, 2003: http://mcm.leeds.ac.uk/MCM/, accessed on 30th Nov. 2005.
  • [23] Claeys M., Wang W., Ion A.C., Kourtcheva L, Gelencser A. and Maenhaut W.: Formation of secondary organic aerosolsfrom isoprene and its gas-phase oxidation products through reaction with hydrogen peroxide. Atmos. Environ. 2004, 38, 4093-4098.
  • [24] Kanakidou M., Seinfeld J.H., Pandis S.N., Barnes I., Dentener F.J, Facchini M.C., van Dingenen R., Er-vens B., Ncnes A., Nielsen C.J., Swietlicki E., Putaud J.P., Bałkański Y., Fuzzi S., Horth J., Moortgat G.K., Winterhalter R., Myhre C.E.L., Tsigaridis K., Yignati E., Stephanou E.G. and Wilson J.: Organce aerosol and global climate modelling: A review. Atmos. Chem. Phys. 2005, 5, 1053-1123, SRef-ID: 1680-7324/acp/2005-5-1053.
  • [25] Limbeck A.; Kulmala M. and Puxbaum H.: Secondary organie aerosol formation in the atmosphere via heterogeneous reaction of gaseous isoprene on acidic particles. Geophys. Res. Lett. 2003, 30, 1996, doi: 10.1029/2003GL017738 09.
  • [26] Derome J., Nieminen T. and Saarsalmi A.: Sulphur dioxide adsorption in Scots pine canopies exposed to high ammonia emissions near a Cu—Ni smelter in SW Finland. Environ. Pollut. 2004, 129, 79-88.
  • [27] Wannaz E.D., Zygadlo J.A. and Pignata M.L.: Airpollutants effect on monoterpenes composition andfo-liar chemical parameters in Schinus areira L. Sci. Total Environ. 2003, 305, 177-193.
  • [28] Barber J.L., Thomas G.O., Kerstiens G. and Jones K.C.: Current issues and uncertainties in the measurement and modelling of air-vegetation exchange and within-plant processing of POPs. Environ. Pollut. 2004, 128, 99-138.
  • [29] Harley P.C., Monson R.K. and Lerdau M.T.: Ecological and evolulionary aspects ofisoprene emission from plants. Oecologia 1999, 118, 109-123.
  • [30] Loreto F., Mannozzi M., Maris C., Nascetti P., Ferranti F. and Pasąualini S.: Ozone ąuenching properties of isoprene and its antioxidant role in leaves. Plant Physiol. 2001, 126, 993-1000.
  • [31] Rohr A.C., Wilkins C.K., Clausen P.A., Hammer M., Nielsen G.D., Wolkoff P. and Spengler J.D.: Upper airway and pulmonary effects of oxidalion products of (+)-alpha-pinene, d-limonene, and isoprene in balb/c mice. Inhalat. Toxicol. 2002, 14, 663-684.
  • [32] Peden D.D.: Pollutants and asthma: Role of air toxics. Environ. Health Per. 2002, 110, Supplement 4, 565-568.
  • [33] Grantz D.A. Garner, J.H.B. and Johnson D.W.: Ecological effects of particulate matter. Environ. Int. 2003, 29, 213-239.
  • [34] Shallcross D.E. and Monks P.S.: New Directions: A role for isoprene in biosphere-climate-chemiitry feedbacks. Atmos, Eiwiron. 2000, 34, 1659-1660.
  • [35] Fuentes J.D., Hayden B.P., Garstang M., Lerdau M., Fitzjarrald D., Baldocchi D.D., Monson R., Lamb B. and Geron C.: New Directions: YOCs and biosphere-atmosphere feedbacks. Atmos. Environ. 2001, 35, 189-191.
  • [36] Went F.W.: Blue hazes in the atmosphere. Nature 1960, 187, 641-643.
  • [37] Rudziński K.J.: Heterogeneous and agueoiis-phase transformations oj isoprene, [in:] Environmental simulation chambers: Application to Atmospheric Chemical Processes; Bames I. and Rudziński K.J. (eds.), Springer, Dordrecht 2006.
  • [38] Moortgaat G.K. and Grgic I.: Phase transitions in the atmosphere: Formation of aerosols from gaseous precursors. [in:] CMD Finał Report 2003; Schurath U. and Naumann K.H. (eds.), http://imk-ai-da.fzk.de/CMD/fmal_report/index.html, accessed on 30th Nov. 2005.
  • [39] Ziajka J. and Pasiuk-Bronikowska W.: Autaxidation ofsulphur dioxide in theprcsence o falcohols under conclitions rejated to the tropospheric aąiieous phase. Atmos. Environ. 2003, 37, 3913-3922.
  • [40] Ziajka J. and Pasiuk-Bronikowska W.: Ratę conslantsfor atmospheric trace organics scawnging SO4- in the Fe-catafysed autosidation of S(IV). Atmos. Enyiron. 2005, 39, 1431-1438.
  • [41] Pasiuk-Bronikowska W.: Unpublished report, Inst. Phys. Chem. P.A.S., Warsaw 2004.
  • [42] Rudziński K..J.: Degradation of isoprene in the presence ofsulphoxy rodical anions. J. Atmos. Chem. 2004, 48, 191-216.
  • [43] N1ST Chemistry WebBook, 2001: http://webbook.nist.gov/chemistry, (search for isoprene), accessed on 30th Nov. 2005.
  • [44] Sander R.: Compilatian of Hemy's Law conslantsfor inorgariic and organie specie.f of polential importance in environmental chemistry, 1999. http://www.mpch-mainz.mpg.de/~sander/res/henry.html, accessed on 30th Nov. 2005.
  • [45] Zhu L., Nicovich J.M. and Winę P.H.: Temperature-dependent kinetics studies of aqueous phase reactions of hydroxyl radicals with dimethylsitlfoxide, dimethylsitlfone, and melhancsttlfonate. Aquat. Sci. 2003, 65, 425-435.
  • [46] Lucas D.D. and Prinn R.G.: Parametric sensitivity and uncertainty analysis of dimethylsulfide nxidation in the clear-sky remote marine botindary layer. Atmos. Chem. Phys. 2005, 5, 1505-1525, SRef-lD: 1680-7324/acp/2005-5-1505.
  • [47] Jacob, D. J.: The chemistry of OH in remote elouds and its role in the production of formie acid and peroxymonosulfate. J. Geophys. Res., 1986, 91, D, 9807-9826.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG4-0010-0055
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.