PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Three Ways Ashore: Where Did Terrestrial Plants, Arthropods and Vertebrates Come from? Are Essentiality Patterns of Chemical Elements Living Bio(-Geo)chemical "Fossils"? - Inferences from Essentiality Patterns and the Biological System of Elements

Identyfikatory
Warianty tytułu
PL
Trzy drogi na ląd: skąd wywodzą się rośliny lądowe, stawonogi i kręgowce? Czy bio(-geo)chemiczne "skamieliny" odwzorowują rozkład istotnych pierwiastków chemicznych żywych organizmów? - wnioski wyciągnięte z rozkładu pierwiastków istotnych oraz...
Języki publikacji
EN
Abstrakty
EN
Among other topics the Biological System of Elements [3] comprehensively describes the distribution of chemical elements in glycophyte plants, regardless whether these elements are essential, (presumably) non-essential or outright toxic. This approach has also been applied to other taxa, phyla and even kingdoms. However, comparisons among different kingdoms of organisms which separated about one billion years ago (fungi, algae, higher plants, animals) show large differences among the sets of essential elements. Thus evolutionary changes render it impossible to reconstruct the whereabouts of the ancestors of groups of recent organisms (geochemical palaeoecology) from comparisons of element essentialities Ys. the relative abundances of these and other elements in sea- and fresh water, respectively. Losses of ions from the tissues of fresh-water fishes are controlled by the extent of complexation. The selection pressure to go ashore was larger in fresh water. Probably the number of essential elements was larger soon after evolution of metazoans, adaptation to live with fewer ones being most pronounced in fungi.
PL
Wśród innych obecnie rozpatrywanych podejść, Biologiczny System Pierwiastków Chemicznych (BSE) zrozumiale opisuje podział pierwiastków chemicznych w roślinach glikofitowych, bez względu na to, czy te pierwiastki są istotne, (przypuszczalnie) nieistotne lub też ewidentnie toksyczne. Takie podejście zastosowano również do innych grup taksonomicznych i gromad, a nawet królestw. Jednak porównania różnych królestw organizmów, które rozdzieliły się ok. l miliarda lat temu (grzyby, algi, rośliny wyższe, zwierzęta), pokazują duże różnice między zestawieniami pierwiastków istotnych. A zatem zmiany ewolucyjne sprawiają, że nie jest możliwa rekonstrukcja miejsca przebywania przodków współczesnych grup organizmów (paleontologia geochemiczna) poprzez porównanie względnego rozpowszechnienia w nich pierwiastków istotnych oraz innych pierwiastków z takimi danymi dla wody słodkiej i morskiej. Ubytki jonów z tkanek ryb słodkowodnych są kontrolowane przez zakres ich skompleksowania. Napór do wyjścia na ląd był większy dla organizmów słodkowodnych. Prawdopodobnie liczba pierwiastków istotnych była większa krótko po pojawieniu się tkankowców. Adaptacja do życia z mniejszą liczbą tych pierwiastków jest najbardziej wyraźna u grzybów.
Rocznik
Strony
949--967
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
autor
  • International Graduate School (IHI) Zittau, Markt 23, D-02763 Zittau, Germany
autor
  • International Graduate School (IHI) Zittau, Markt 23, D-02763 Zittau, Germany
Bibliografia
  • [1] Lowenstein T.K., Timofeeff M.N., Brennan S.T., Hardie L.A. and Demicco R.V.: Oscillations in Phanerozoic Seawater Chemistry: Evidence from Fluid Inclusions. Science, 2001, 294, 1086-1088.
  • [2] Markert B.: Distribution and Biogeochemistry of Inorganic Chemicals in the Environment, [in:] Ecotoxicology — Ecological Fundamentals, Chemical Exposure, and Biological Effects, (eds.) Schüürmann G. and Markert B., Spektrum, New York—Chichester etc. (Wiley) and Heidelberg etc. 1998, pp. 165-222.
  • [3] Markert B.: The Biological System of the Elements (BSE) for terrestrial plants (glycophytes). Sci. Total Environ., 1994, 155, 221-228.
  • [4] Fränzle S. Markert B.: The Biological System of the Elements (BSE), Part II: a theoretical model for establishing the essentiality of chemical elements. The application of stoichiometric network analysis to the biological system of the elements. Sci. Total Environ., 2000, 249, 223-241.
  • [5] Heckman D.S., Geiser D.M., Eidell B.R., Stauffer R.L., Kardos N.L. and Hedges S.B.: Molecular Evidence for the Early Colonization of Land by Fungi and Plants. Science, 2001, 293, 1129-1133.
  • [6] Markert B.: Instrumental Element and Multi-Element Analysis of Plant Samples — Methods and Applications. Wiley, Chichester—New York etc. 1996.
  • [7] Fränzle S. and Markert B.: The Biological System of the Elements (BSE) — a brief introduction into historical and applied aspects with special reference on "ecotoxicological identity cards" for different element species (e.g., As and Sn). Environ. Poll., 2002, in the press.
  • [8] Williams R.J.P. and da Silva F.: The Natural Selection of the Chemical Elements. Clarendon Press, Oxford 1995.
  • [9] Höhne W.E.: Metallionen in Struktur und Funktion von Metalienzymen. Z. Chem., 1980, 20, 1-11.
  • [10] Burgess J.: Man and the Elements of Groups 3 and 13. Chem. Soc. Rev., 1996, 25, 85-92.
  • [11] Egami F.: Minor Elements and Evolution. J. Mol. Evol., 1974, 4, 113-120.
  • [12] Beck M.T. and Ling J.: Transition-Metal Complexes in the Prebiotic Soup. Naturwiss., 1977, 64, 91.
  • [13] Kobayashi K. and Ponnamperuma C.: Trace Elements in Chemical Evolution, part I. Origins Life 1985, 16, 41-55.
  • [14] Kobayashi K. and Ponnamperuma C.: Trace Elements in Chemical Evolution, part II: experimental results. Origins Life, 1985, 16, 57-67.
  • [15] Bahadur K.: Photochemical Synthesis of Amino Acids from Formaldehyde and Nitrates Catalyzed by Metal Salts. Nature, 1954, 164, 1141.
  • [16] Huber C. and Wächtershäuser G.: Activated Acetic Acid by Carbon Fixation on (Fe, Ni)S Under Primordial Conditions. Science, 1997, 276, 245-248.
  • [17] Bahadur K., Ranganayaki S. and Santamaria L.: Photosynthesis of amino acids from paraformaldehyde involving the fixation of nitrogen in the presence of colloidal molybdenum oxide as catalyst. Nature, 1958, 182, 1668-1669.
  • [18] Le Son H.. Suwannachot Y., Bujdak J. and Rode B.M.: Salt-induced peptide formation from amino acids in the presence of clay and related catalysts. Inorg. Chim. Acta, 1998, 272, 89-94.
  • [19] lvanov Ch.P. and Slavcheva N.N.: Some analogies between prebiotic thermal conversions of glycine and metabolic pathways. Origins Life, 1984, 14, 177-184.
  • [20] Strasdeit H., Büsching I., Behrends S., Saak W. and Barklage W.: Syntheses and Properties of Zinc and Calcium Complexes of Valinate and Isovalinate — Metal a-Amino Acidates as Possible Constituents of the Early Earth's Chemical Inventory. Chem. Eur. J., 2001, 7, 1133-1136.
  • [21] Markert B.: Inorganic chemical fingerprinting of the environment: “reference freshwater” — a useful tool for comparison and harmonization of analytical data in freshwater chemistry. Fresenius J. Anal. Chem., 1994, 349, 697-702.
  • [22] Markert B., Pedrozo F., Geller W., Friese K., Korhammer S., Bafficco G., Diaz M. and Wölfl S.: A contribution to the study of the heavy-metal and nutritional element status of some lakes in the southern Andes of Patagonia (Argentina). Sci. Total Environ., 1997, 206, 1-15.
  • [23] Nozaki Y.: A Fresh Look at Element Distribution in the North Pacific. Eos, 1997, 78, 207-211 (also available from the Internet).
  • [24] Feng D.-F., Cho G. and Doolittle R.F.: Determining divergence times with a protein clock: Update and reevaluation. Proc. Natl. Acad. Sci. USA, 1997, 94, 13028-13033.
  • [25] Kaim W. and Schwederski B.: Bioanorganische Chemie — Zur Funktion chemischer Elemente in Lebensprozessen. Teubner, Stuttgart 1991.
  • [26] Chapman W.H., Fisher M.L. and Pratt M.W.: Concentration Factors of Chemical Elements in Edible Aquatic Organisms, UCRL-50564, Lawrence Radiation Laboratories, Livermore, CA, December 30, 1968.
  • [27] Cowgill U.M.: Biogeochemistry of the rare-earth elements in aquatic macrophytes from Linsley Pond, North Branford, Connecticut. Geochim. Cosmochim. Acta, 1973, 37, 2329-2345.
  • [28] Nuclear Task Force: Report on Bioaccumulation of Elements to Accompany the Inventory of Radionuclides in the Great Lakes Basin, www.ijc.orgiboards/nuelear/bio/part2.html, 1996.
  • [29] Emsley J.: Nature's Building Blocks. An A-Z Guide to the Elements. OUP, Oxford 2001.
  • [30] Basolo F. and Pearson R.G.: Mechanisms of Inorganic Reactions, Wiley, New York 1967.
  • [31] Pearson R.G.: Recent Advances in the Concept of Hard and Soft Acids and Bases. J. Chem. Educ., 1987, 64, 561-567.
  • [32] Broadley M.R. and Willey N.J.: Differences in root uptake of radiocaesiurn by 30 plant taxa. Environ. Poll., 1997, 97, 11-15.
  • [33] Cotton F.A. and Wilkinson G.: Anorganische Chemie: eine zusammenfassende Darstellung für Fortgeschrittene, Verlag Chemie, Weinheim-Deerfield Beach-Basel 1982.
  • [34] Sillen L.G.: Processes Regulating the Oxidation State of the System (Air + Sea + Sediments) in Past and Present. Acta Chim. Scand., 1964, 18, 1016-1018.
  • [35] Sigg L. and Stumm W.: Aquatische Chemie. Eine Einführung in die Chernie wässriger Lösungen und natürlicher Gewässer. Hochschulverlag an der ETH, Zürich 1996.
  • [36] Marcus Y.: Thermodynamic functions of transfer of single ions from water to non-aqueous and mixed solvents: Part I - Gibbs free energies of transfer to non-aqueous solvents. Pure Appl. Chem., 1987, 55, 978-1019.
  • [37] Irving H. and Williams R.J.P.: The Stability Series of Complexes of Divalent Cations. J. Chem. Soc., 1953, 1953, 3192-3210.
  • [38] Sigel H. and McCormick D.C.: On the Discriminating Behaviour of Metal Ions and Ligands with Regard to Their Biological Significance. Acc. Chem. Res., 1970, 3, 201-208.
  • [39] Strasdeit H.: The First Cadmium-Specific Enzyme. Angew. Chem., 2001, 113, 730-732.
  • [40] Price N.M. and Morel F.M.M.: Cadmium and cobalt substitution for zinc in a marine diatom. Nature, 1990, 344, 658-660.
  • [41] Elser J.J. and Urabe J.: The stoichiometry of consumer-driven nutrient recycling: theory, observations, and consequences. Ecology, 1999, 80, 745-751.
  • [42] Lenton T.M. and Watson A.J.: Redfield revisited: 1. Regulation of nitrate, phosphate and oxygen in the ocean. Global Biogeoch. Cycles, 1999, 14, 225-248.
  • [43] Redfield A.C.: The biological control of chemical factors in the environment. Am. Sci., 1958, 46, 205-221.
  • [44] Mishler B.D. and Churchill S.P.: Transition to a land flora: phylogenetic relationships of the green algae and bryophytes. CIadistics, 1985, 1, 305-328.
  • [45] Board P.A.: Redox regulation of atmospheric oxygen and its consequences. Nature, 1977, 276, 591-592.
  • [46] Butler A.: Acquisition and Utilization of Transition Metal Ions by Marine Organisms. Science, 1998, 281, 207-210.
  • [47] Fränzle S. and Markert B.: Carcinogenesis and chemotherapy viewed from the perspective of Stoichiometric Network Analysis (SNA): what can the Biological System of the Elements contribute to an understanding of tumour induction by elemental chemical noxae (e.g. Ni2+, Cd2+) and to an understanding of chemotherapy? www.thescientificworld.com, 2002.
  • [48] Karol K.G., McCourt R.M., Cimino M.T. and Delwiche C.F.: The Closest Living Relatives of Land Plants, Science, 2001, 294, 2350-2351.
  • [49] Nei M., Xu P. and Glazko G.: Estimation of divergence times from multiprotein sequences for a few mammalian species and several distantly related organisms, Proc. Natl. Acad. Sci. USA, 2001, 98, 2497-2502.
  • [50] Wood J.M.: Biological Cycles for Elements in the Environment. Naturwiss., 1975, 62, 357-364.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG3-0001-0076
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.