Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:443/baztech/element/bwmeta1.element.baztech-article-BPG1-0015-0027

Czasopismo

Inżynieria Powierzchni

Tytuł artykułu

Macro- Meso- and Micro-scopic Metallo-Thermo-Mechanics - Application to Phase Transformation Incorporating Process Simulation

Autorzy Inoue, T. 
Treść / Zawartość
Warianty tytułu
PL Makro- mezo- i mikroskopowe sposoby oceny przemian fazowych w metalach uwzględniające proces symulacji komputerowej
Języki publikacji EN
Abstrakty
EN Three kinds of approach from macro- meso- and micro-scopic viewpoints are summarized in this paper, relevant to simulating the phase transformation incorporating processes. Since the fields of material structure, temperature and stress/strain induced in a body in such process are coupled each other, the ordinal way to solve independent (or, uncoupled) governing equations for transformation kinetics, heat conduction and stress analysis is insufficient, but thermodynamics-based consideration is needed to obtain the coupled equations among three fields. A transformation parameter indicating progressive phase change is introduced as one of internal parameters representing volume fraction of each phase or phase field parameter, and governing three kinds of equation for the parameter, Fourier law and stress-strain constitutive equation are derived. Thus obtained equations are applied to formulate the macroscopic finite element scheme and also the phase field method in meso-scopic sense in the framework of continuum thermodynamics. The molecular dynamics approach is also carried out to evaluate microscopic, or physical aspect of the fields. Some examples of the computer simulated processes with phase transformation are illustrated based on such three kinds of approach.
PL W artykule przedstawiono trzy sposoby oceny przemian fazowych w metalach, tzn. w skali: makro-mezo i mikroskopowej, uwzględniając przy tym proces symulacji komputerowej. Ponieważ w strukturze materiału zaznacza się wpływ temperatury, nacisków oraz naprężeń własnych i to w całej jego objętości, a procesy te są wzajemnie powiązane, toteż stosowany zazwycząj sposób rozwiązania analitycznego z użyciem niezależnych wzorów dotyczących kinetyki przemian, przewodnictwa cieplnego czy rozkładu naprężeń własnych, okazał się niewystarczający. W tej sytuacji niezbędnym się stały rozważania bazujące na termodynamice i pozwalające na uzyskanie zależności łączących przemiany fazowe zachodzące w trzech rozważanych obszarach, tj. skali: makro-mezo- i mikroskopowej. W tym celu sformułowano m. in. parametr wewnętrzny przemian charakteryzu jący zmiany fazowe, a reprezentujący objętościowe części poszczególnych faz i związany z trzema rodzajami równań wyprowadzonych dla rozważanych obszarów. Równania te wyprowadzono korzystając z prawa Fouriera oraz równań konstytutywnych dla nacisków i naprężeń własnych. Wyprowadzone równania zastosowano do utworzenia schematu przemian w skali makroskopowej - metodą elementów skończonych oraz schematu przemian w skali mezoskopowej metodą pól fazowych w ramach continuum termodynamicznego. Molekularno-dynamiczne podejście zostało przyjęte dla wykonania obliczeń w skali mikroskopowej. W artykule podano również przykłady symulacji komputerowej procesów z przemianami fazowymi, bazując na trzech przjętych sposobach podejścia, tj. dla skali: makro-mezo- i mikroskopowej.
Słowa kluczowe
PL przemiany fazowe w metalach   symulacja komputerowa  
Wydawca Instytut Mechaniki Precyzyjnej
Czasopismo Inżynieria Powierzchni
Rocznik 2005
Tom Nr 1
Strony 23--35
Opis fizyczny Bibliogr. 72 poz., rys.
Twórcy
autor Inoue, T.
  • Fukuyama University, Hiroshima, Japan
Bibliografia
[1] Inoue T., Nagaki S., Kishino T., Monkawa M.: Description of transformation kinetics, heat conduction and elastic-plastic stresses in the course of quenching and tempering of some steels, Ingenieur-Archiv, Vol. 50,No. 5 (1981) pp. 315-327.
[2] Inoue T., Wang Z.G.: Coupling between stress temperature and metallic structures during processes involving phase transformation, Material Science and Technology, Vol. 1 (1985-10) pp. 845-850.
[3] Inoue T.: Metallo-thermo-mechanical coupling. Application to the analysis of quenching, welding and continuous casting processes, Berg- und Huttenmannische Monatshefte, Vol.132, No.3, 1987, pp 63-71.
[4] Inoue T.: Inelastic constitutive relationships and applications to some thermomechanical processes involving phase transformation, Thermal Stresses, Vol. 3 (Ed. by Richard B.Hetnarski), 1988, North-Holland.
[5] Totten G., Howes M., Inoue T.: Handbook of Residual Stress and Deformation in Steel, 2002, ASM International) G. W. Greenwood and R. H. Johnson, The Deformation of Metals under Smali Stresses during Phase Transformations, Proc, Roy, Soc, London, 283A.n403 (1965), pp. 403-422.
[6] Inoue T., Raniecki B.: Determination of Thermal-hardening Stresses in Steels by use of Thermoplasticity Theory, Journal of the Mechanics and Physics of Solids, Vol. 26, No. 3 (1978-7) pp. 187-212.
[7] Greenwood G. W., Johnson R. H.: The deformation of metals under small stresses during phase trans-formations, Proc. Roy. Soc.: 283A, 403-22, (1965).
[8] Leblond J. B.: Mathematical modelling of transformation plasticity in Steels - II. Coupling with strain hardening phenomena, Int. J. Piast., 5, (1989), pp. 573.
[9] Fischer F. D.: Transformation induced plasticity in triaxially loaded steel specimens subject to a martensitic transformation, Eur. J. Mech., A/Solids, 11,2 (1992), pp. 233-244.
[10] Denis S., Gautier E., Simon A.: Modelling of the mechanical behavior of steels during phase trans¬formation: A Review, Intl. Conf. on Residual Stresses, ICRS2 (1991), pp. 393-398.
[11] Magee C. L., Aaronson H. l. (ed.): Phase Transfor¬mations, AMS, Metals Park (1968), pp.115-156.
[12] Shipway P. H., Bhadeshia H. K. D. H.: The effect of small stresses on the kinetics of the bainite transformation, Material Science and Technology, A201 (1995), pp.143-149.
[13] Inoue T., Wang Z.G., Miyao K.: Simulation of quenching process of carburized steel gear wheel under metallo-thermo-mechanical coupling, Thermomechanical coupling in solids, Proceedings of IUTAM Symposium on Thermomechanical Cou-pling in Solids, Paris, pp.257-262 (1987-5), Elsevier Science Publishers, B.V., North-Holland
[14] Inoue T., Otsuka T.: An experimental method to identify the transformation plastic behavior, Proceedings of 13th Heat Treating Symposium, International Federation of Heat Treatment Science and Engineering, Columbus, 2002-10, CD-published.
[15] Fischer F. D., Sun Q.P, Tanaka K.: Transformation plasticity (TRIP), Appl. Mech. Rev. 49-6(1996) pp.317-364.
[16] Maugin G. M.: The Termomechanics of Plasticity and Fracture, Press Syndicate of the University of Cambridge, 1992
[17] Sekerka R. F.: Fundamentals of phase field theory, Advances in Crystal Growth Research, eds K. Sato, Y. Furukawa and K. Nakajima, Elsevier, Amster¬dam, (2001), pp. 21-41.
[18] Kobayashi R.: Mathematical models of phase transition and interfacial motion (in Japanese), Bull. Japan Soc. Ind. Appl. Math. 1(1991) pp.300-311.
[19] Kobayashi R.: Modeling and numerical simulations of dendritic crystal growth, Phyasica D, 63 (1993), pp. 410-423.
[20] Wang S. L., Sekerka R. F.: Computation of the dendritic operating state at large supercoolings by the phase field model, Phys. Rev. E, 53 (1996) pp. 3760-3776.
[21] Wang S. L., Sekerka R. F.: Algorithms for phase field computation of the dendritic operating state at large supercoolings, J. Comp. Phys., 127 (1996) pp. 110-117.
[22] Wang S. L., Sekerka R. F., Wheeler A. A., Murray B. T.,. Coriell S. R, Braun R. J., McFadden G. B.: Thermodynamically - consistent phase-field models for solidification, Physica D, 69 (1993), pp. 189-200.
[23] Karma A.,. Rappel W. J: Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics, Phys. Rev. E, 53 (1996), pp. 3017-3020.
[24] Wheeler A. A.,. Boettinger W. J., McFadden G. B.: Phase-field model of solute trapping during solidification, Phys. Rev. E, 47 (1993) pp. 1893-1909.
[25] Bi Z., Sekerka R. F.: Phase-field model of solidifica¬tion of a binary alloy, Physica A, 261 (1998) pp. 95-106.
[26] Cahn J. W.: Theory of crystal growth and interface motion in crystalline materials, Acta Metali., 8 (1960) pp. 554-562.
[27] Caginalp G., Fife P.C.: Phase-field methods for interfacial boundaries, Phys. Rev. B, 33 (1986) pp. 7792-7794.
[28] Caginalp G.: Ań analysis of a phase field model of a free boundary, Arch. Ration. Mech. Anal., 92 (1986), pp. 205-245.
[29] Kassner K., Misbah C., Muller J., Kappey J., Kohlert P.: Phase-field modeling of stress-induced instabilities, Phys. Rev. E, 63 (2001), 036117, 1-27.
[30] Eastgate L.O., Sethna J. P., Rauscher M., Cretegny T., Chen C. S., Myers C. R.: Fracture in model l using a conserved phase-field model, Phys. Rev. E, 65(2002), 036117, 1-10.
[31] Hoover W.G.,:Molecular dynamics (Lecture notes in physics, Vol. 258), (1986), Springer-Verlag.
[32] Rapaport D.C.: The art of molecular dynamics simulation, (1995), Cambridge University Press.
[33] Alder B. J., Wainwright T.E.: Phase transition for a hard sphere system, J. Chem. Phys., 27 (1957), pp. 1208-1209.
[34] Verlet L.: Computational Experiments on Classical Fluids. l. Thermodynamical Properties of Lennard-Jones Molecules, Phys. Rev. 159 (1967), pp.98-103.
[35] Saito Y.: Statistical physics of crystal growth, (1996), World Scientific.
[36] Bowen B.M.: Theory of mixture, ed. A.C. Eringen, Continuum Physics (Academic Press, New York, 1976, Vol. 3, pp. 2-129.
[37] Johnson W.A., Mehl R.F.: Reaction kinetics in processes of nucleation and growth, Trans. AIME 135,1939, pp. 416-458.
[38] Fujita M., Suzuki M.: The effect of high pressure on the isothermal transformation in high purity Fe-C alloys and commercial steels, Trans. ISIJ 14, (1974), pp. 44-53.
[39] Bhattacharyya S., Kehl G.L.: Isothermal transformation of austenite under externally applied tensile stress, Trans. ASM 47 (1955), pp. 351-379.
[40] Sjostrom S.: Interactions and constitutive models for calculating quench stresses in steel, Materiał Science and Technology, 1 (1985), pp. 823-829.
[41] Denis S. A., Simon A., Beck G.: Estimation of the effect of stress/phase transformation interaction when calculating internal stress during Mmrtensitic quenching of steel, Transactions ISIJ, 22 (1982) pp. 504-513.
[42] Magee C.L.: The Nucleation of Martensite (ASM, New York, 1968) Ch. 3.
[43] Onodera H., Gotoh H., Tamura l.: Effect of volume change on martensitic transformation induced by tensile or compressive stress in polycrystalline iron alloys, Proceedings 1st JIM International Symposium on New Aspects of Martensitic Transformation, 1976, pp. 327-332.
[44] Patel J.P., Cohen M.: Criterion for the action of applied stress in the martensitic transformation, Acta Metal. 1,1953, pp. 531-538.
[45] Radcliffe SV., Schatz M.: The effect of high pres¬sure on the martensitic reaction in iron-carbon alloys, Acta Metal. 10, 1962, pp. 201-207.
[46] Inoue T., Arimoto K., Ju D.Y.: Metallo-thermo-mechanical Simulation of Ouenching Process — Theory, and Implementation of Computer Code "HEARTS", Proceedings of the first International Conference on Ouenching and Control of Distor-sion, Chicago, September 22-25, 1992, pp. 205-212.
[47] Inoue T., Arimoto K.: Development and implemen-tation of CAE system "HEARTS" for heat treatment simulation based on metallo-thermo-mechanics.J.
Materials Engineering and Performance, ASM In-ternational, Vol.6, No.1 (1997-1) pp.51-60.
[48] Ikuta F., Inoue T.: Simulation of residual streses/distortion and structural change in the course of stationary and scanning induction hardening processes for steel rings and cylinders, Proceedings of the 17th Heat Treating Society Conference and Exposition and the1st International Induction Heat Treating Symposium, Indianapolis, (1998-3) pp.541-550.
[49] Ju D.Y., Ito Y., Inoue T.: Simulation and Verification of Residual Stresses and Distortion in Carburized-quenching Process of a Gear Shaft, Proc. 4th Int. Conf. Ouenching and the Control of Distortion, 20-23 May, 2003, Beijing, pp. 291-296.
[50] Nagasaka Y.: Mathematical model of phase trans-formations and elasto-plastic stress in the water spray quenching of steelbBars, Metallurgical Transactions A, 24A (1993), pp. 795-808
[51] Okamura K., Kawashima H.: Analysis of residual deformation of a gear during quenching, 32nd Japan Congress on Materiał Reserch (1989), pp. 323-329.
[52] Porzner H.: Predictive Simulation of welding and heat treatment simulation, Pam User Conference in Asia, PUCA MM, 2 (2000), pp. 579-613
[53] Arimoto K., Li G., Arvind A., Wu W. T.: Proc. 18th ASM Heat Treatment Society Conference and Ex-position, pp. 23-30.
[54] Arimoto K., Lambert D., Li G., Arvind A., Wu W. T.: Development of heat treatment simulation system DEFORM-HT, Proc, 18th Heat Treating Conference, ASM International (1998), pp. 639-644.
[55] Ferguson B. L., Freborg A, M., Petrus G. J.: Software simulates quenching, heat treating progress, ASMI (2000), pp. H31-H36.
[56] Ferguson B. L., Freborg A. M., Pertrus G. J.: Modeling to investigate sensitivities to heat treat process variables, 21 st ASM HTS Conference, Indianapolis (2001).
[57] Biffle J. H.: Heat treatment coupled mechanics software, 21 st ASM HTS Conference, Indianapolis (2001).
[58] T. Inoue and K. Okamura, Materiał database for simulation of metallo-thermo-mechanical fields, Proceedings of 5th International Symposium on Ouenching and Distortion Control, ASM, St Louis, October, 2000, pp.753-760.
[59] Inoue T.: Japanese sword in comparison with others, Proceedings of 8th International Confer-ence on Mechanical Behaviour of Materials, Victoria, Canada, (1999), pp. 458-468.
[60] Inoue T.: The Japanese Sword the Materiał, Manufacturing and computer simulation of Quenching Process, Materials Science Research International, 3-4(1997), pp.193-203.
[61] Inoue T.: Science of tatara and Japanese sword Traditional Technology viewed from Modern Science -, Proceedings of 1st International Conference of Business and Technology Transfer, ICBTT2002, Kyoto, 2002-10 pp.133-138.
[62] Wang Z. G., Inoue T.: Viscoplastic constitutive relation incorporating phase transformation — Application to welding, Material Science and Technology, Vol. 1 (1 985-1 0)pp. 899-903.
[63] Wang Z. G., Inoue T.: A viscoplastic constitutive relationship with phase transformation and the application to the process of welding, Proceedings of the International Symposium on Calculation of Internal Stresses in Heat Treatment of Metallic Mate¬rials, (1984-5) pp. 474-486.
[64] Inoue T., Ju D.Y.: Thermomechanical simulation of some types of steady continuous casting processes, Advances in Continuum Mechanics [39 Papers from International Experts Dedicated to Horst Lippmann ed. O. Bruller, V. Mannl and J. Najar, Springer-Yerlag, 1991 , pp. 389-406.
[65] Ju D.Y., Inoue T.: Inelastic behavior of SUS-304 steel at ultra-high temperaturę and application to the simulation of strip continuous casting by twin roli method, ISIJ International, 42-10 (2002) pp.1 125-1 134.
[66] Uehara T., Tsujino T., Inoue T.: Formulation of coupling effect among phase, temperaturę and stress by using the phase field method (in Japanese), Proc. 2003 Mechanics and Materials Conference, (2003), pp. 497-498.
[67] Uehara T., Kawahara M., Inoue T.: Phase-field simulation of dendritic growth by use of material parameters identified by molecular dynamics method, Proc. 7th Asian Foundry Congress (AFC-7), (2001), pp. 503-512.
[68] Uehara T., Kawahara M., Inoue T.: Computer simulation of dendritic crystal growth by use of phase-field model based on molecular dynamical evaluation, Proc. Fifth World Congress on Computational Mechanics (WCCM V), Eds H. A. Mang, F. G. Rammerstorfer, J. Eberhardsteiner, (2002), Vienna Univ. of Technology, Austria, http://wccm. tuwien. ac.at (Published on the website).
[69] Uehara T., Sekerka R.F.: Evaluation of phase-field parameters by molecular dynamics simulation of crystal growth, Advances in Comp. Eng. Sci. (Proc. 2002 Int. Conf. Comp. Eng. Sci.), Edited by Satya N. Atluri, Darrell.
[70] Uehara T., Inoue T.: Molecular dynamics simulation of heat conduction and thermal stress in relation with continuum mechanics, Materials Science Research International, 4-1(1998) pp. 45-52.
[71] Uehara T., Inoue T.: Molecular dynamics approach to thermo-mechanical behavior of a thin-film surface during melting and solidification, Proc. Progress in Mechanial Behaviour of Materials (ICM8), Vol. II, (1999), pp. 712-717.
[72] Uehara T., Masago T., Inoue T.: Analysis of atomic behavior during in-slid phase transformation of Ni-Al alloy due to temperature change (in Japanese), Preprints of 50th Anniversary Conference of the Society of Materials Science, Japan, Osaka, 2001, pp. 283-284.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPG1-0015-0027
Identyfikatory