Identyfikatory
Warianty tytułu
Tribologia silników i technologia modyfikacji powierzchni
Języki publikacji
Abstrakty
Artykuł poświęcony jest problematyce tribologicznej oraz technologii obróbki powierzchniowej wybranych zespołów silników samochodowych. Jako zespoły, pracujące w warunkach narażenia na zużycie tribologiczne, omówiono: cylinder - tłok (pierścienie tłokowe), zawory - gniazda zaworowe, krzywki - popychacze, a także blok cylindrowy. Analizując pracę ww. elementów trących stwierdzono, że podstawowym mechanizmem zużywania zespołu; tłok - cylinder jest zużycie ścierne, powodowane twardymi cząstkami zawartymi w środku smarowym, bądź paliwie, a ponadto również niszczenie korozyjne. Dominuącymi mechanizmami zużywania w układzie: zawory - gniazda zaworowe są; zużycie ścierne, adhezyjne i odkształceniowe a także zużywanie korozyjne. W parze tribologicznej typu krzywki - popychacze obserwuje się tarcie ślizgowe oraz tarcie toczne w warunkach wysokich nacisków jednostkowych. Stąd też, przy tarciu ślizgowym rejestruje się przypadki zacierania, a przy tarciu tocznym- pittingu. Dużą część artykułu poświęcono materiałom stosowanym na wymienione zespoły silników. Stwierdzono m.in., że bloki cylindrowe wykonywane są z żeliwa lub siluminów, zaś powierzchnie tulei cylindrycznych obrabia się cieplnie, cieplno-chemicznie, galwanicznie względnie metodą metalizacji natryskowej. Tłoki produkowane są z żeliwa lub stopów aluminium, a ponadto nakładane są powłoki z miękkich metali (np. Pb) lub kompozytów żywicznych (z PTFE, MOS2 i grafitu). Pierścienie tłokowe na ogół wykonuje się z żeliwa, które następnie może być chromowane, molibdenowane, fosforanowane, azotowane itp. Ostatnio podjęto próby wykonywania pierścieni metodą metalurgii proszków. Zawory silnikowe i gniazda zaworowe wykonuje się ze stali stopowych. Dla zwiększenia ich trwałości nakłada się różnego typu powłoki metodą natrysku cieplnego. W ostatnim okresie czasu zaczęto na elementy te stosować materiały ceramiczne (na bazie węglika krzemu, azotku krzemu), a także materiały spiekane. Krzywki i popychacze wykonuje się z żeliwa lub stali, które następnie poddawane są obróbce: cieplnej, cieplno-chemicznej, metalizacji natryskowej, a także nowoczesnymi technikami typu CVD i PVD. Ostatnie partie artykułu poświęcono technice smarowniczej, przy czym dużo uwagi poświęcono dodatkom do olejów silnkowych, typu: MoDTC, ZnDTC, MOS2 itp., a także laboratoryjnym i eksploatacyjnym badaniom tribologicznym omówionych zespołów silników samochodowych.
The surface modification technology has been recognized in applications in automobiles. This technology is known to improve engine's tribological performance and fuel economy. With the higher requirement on the liability and longevity of automotive engine, there are urgent needs for new surface modification technologies and materials on engine components. In this article, a review is provided on surface modification technologies and materials that are applied to engines.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
8--18
Opis fizyczny
rys., bibliogr. 76 poz.
Bibliografia
- [1] Masahiko Nakada: Piston and piston ring tribology and fue economy. Proceedings of the International Tribology Conference, Yokohama, 1995. 1667-1671.
- [2] Masahiko Nakada: Trends in engine technology and tribology. Tribology International, 1994, 27(1): 3-8.
- [3] Engine performance improvement. Automotive Engineering, 1995, 1: 15-20.
- [4] M.J. Neale: The tribology of engine design. Journal of Automotive Engineering, 1992, 206: 197-207.
- [5] T.S. Eyre, K.K. Dutta, F.A. Davis: Characterization and simulation of wear occurring in the cylinder bore of the internal combustion engine. Tribology International, 1990, 23(1): 11-16.
- [6] T. Ootani, N. Yahata, A. Fujiki, A. Ehira: Impact wear characteristics of engine valve and valve seat insert materials at high temperature. Wear, 1995, 188:175-184.
- [7] S.L. Narasimhan, J. M.Larson: Valve gear wear and materials. SAE paper No. 851497, 1985.
- [8] R. Van Dissel, G.C. Barber, J.M. Larson, S.L. Narasimhan: Engine valve seat and insert wear. SAE paper No. 892146, 1989.
- [9] Y.S. Wang, S.K. Schaefer, C. Bennett, G.C. Barber: Wear mechanisms of valve seat and insert in heavy duty diesel engines. SAE paper No. 952476, 1995.
- [10] D. Godfrey, R.L. Courtney: Investigation of the mechanism of exhaust valve seat wear in engines run on unleaded gasoline. SAE paper No. 710356, 1971.
- [11] A. Chaudhuri: Hot corrosion of diesel engine exhaust valves. SAE paper No. 730679, 1973.
- [12] Y.S. Wang, S. Narasimhan, J.M .Larson, J.E. Larson, G.C. Barber: The effect of operating conditions on heavy duty engine valve seat wear. Wear, 1996,201:15-25.
- [13] R. Zhao, G.C. Barber, Y.S. Wang, J.E. Larson: Wear mechanism analysis of engine exhaust valve seats with a laboratory simulator. Tribology Transactions, 1997,40(2): 209-218.
- [14] Zuomin Liu, T.H.C. Childs: Material dissipative processes in automotive engine exhaust valve-seat wear. Dissipative Processes in Tribology. 1994, 445-451.
- [15] V.A. Johnson, C.W. Galen: Diesel exhaust valves. SAE paper No.660034, 1966.
- [16] L.F. Jenkins, J.M. Larson: The development of a new austen stainless steel exhaust valve material. SAE paper No.780245, 1978.
- [17] M. Kano, I. Tanimoto: Wear mechanism of high wear-resistant materials for automotive valve trains. Wear of Materials, ASME, 1991, 83-89.
- [18] M.F. Garwood, D.R. Kinker, J.J. Manganello: Automotive camshafts and tappets. SAE Tran., 1956,64:139-152.
- [19] I.Tanimoto, M.Kano and M.Sasaki. Establishment of a method for predicting cam follower wear in the material development process. SAE paper No. 9.02087, 1990.
- [20] T. Matsui, M. Kobayashi, H. Okamura, K. Kato, Y. Hori: Ceramic tappets cast in aluminum alloy for diesel engines. SAE paper No. 900403, 1990.
- [21] M. Kato, Y. Kimura: Quantitative analysis of cam follower wear in relation to various material properties. Wear, 1993, 162-164: 897-905. [22] K. Ohtsubo, Y. Tsusaka: Effects of disperant-detergent additives on engine wear. J.JST 23, 1978,10:703-708.
- [23] M. Aoki, H. Ikezawa, H. Yoshida: Effects of engine additives on valve-train wear. J.JSAE, 1983, 37(1):61-66.
- [24] D.J. Smoleński, R.H. Kabel: Evaluation of camshaft and lifter wear, deposits, and oil thickening with low-phosphorus engine oils in taxicab service. SAE paper No.861516,1986.
- [25] K. Yoshida, T. Sakurai: Mechanism of valve train wear caused by diesel soot. J.JST, 1988, 33(8): 629-636.
- [26] A.K Helden, R.J. Meer, J.J. Staaden, E. Gelderen: Dynamie friction in cam/tappet lubrication. SAE paper No. 850441, 1985.
- [27] M. Sanada, H. Yamashita, S. Izawa. Method of enhancing wear resistance of cam and follower system in engine valve train. JSAE Review, 1991,12(4): 4-10.
- [28] M. Kano, I. Tanimoto: Wear mechanism of high wear-resistant materials for automotive valve trains. Wear, 1991, 151,229-243.
- [29] M. Soejima, Y. Makuri, Y. Ejima et al.: Experimental evaluation of scuffing resistance of cam and follower. Proceeding of the International Tribology Conference, Tokohama, 1995, 1483-1488.
- [30] V.D.N. Rao, D.M. Kabat, H.A. Clionnek et al.: Material systems for cylinder bore applications-plasma spray technology. Journal of Automotive Engineering, 1997, 23,99-139.
- [31] K. Saito et al.: Development of low friction solid lubricant film coated piston. J.JSAE, 1995, 943, 586-593.
- [32] B.M.Astashkevich. Parts of a cylinder-and-piston group: friction, wear, and lubrication [in Russian]. Masninostroenie, Moscow, 1979, 174-205.
- [33] B.M. Astashkevich: Effect of porosity on the properties of a sintered powder material for piston rings of internal combustion engines. Metal Science and Heat Treatment, 1996, 38(7-8): 299-302.
- [34] B. Bushan, Chemical, Mechanical and Tribological Characterization of Ultra-Thin and Hard Amorphous Carbon Coatings as Thin as 3.5 nm: Recent Developments, (invited), Diamond and Related Materials, Vol. 8, 1999, 1985-2015.
- [35] H.W. Kohler: New piston ring materials reduce wear. Diesel & Gas Turbine Worldwide, 1998, 5: 22-24.
- [36] H. Yoshida et al.: Effects of surface treatments on piston ring friction force and wear. SAE paper No. 900589, 1990.
- [37] Y.S. Wang, S. Narasimhan, J.M. Larson: A review of ceramic tribology and application of Si-based ceramics to engine valves/seat inserts. Journal of Automotive Engineering, 1996, 304, 330-342.
- [38] R.J. Lumby, P. Hodgson, N.E. Cother et al.: Syalon ceramics for advanced engine components. SAE paper No.850521, 1985.
- [39] T. Nishioka, K. Matsunuma, T. Yamamoto et al.: Development of high strength Si3N4 sintered body for the valve systems of automotive engines. SAE paperNo.920384, 1992.
- [40] D.M. Kabat, I.J. Garwin, D.L .Hartsock: Ceramic valve analysis, reliability and test results. SAE paper No. 880670, 1988.
- [41] M. Asnani, F.L. Kuonen: Ceramic valve and seat insert performance in a diesel engine. SAE paper No. 850358, 1985.
- [42] Y. Hori, Y. Miyakawa, S. Asami et al.: Si3N4 ce¬amic valves for internal combustion engines. SAE paperNo.890175, 1989.
- [43] S.H .Updike, P.D. Nagle: Ceramic valve train components. SAE paper No. 880441, 1988.
- [44] S.H. Updike: A comparison of wear mechanics with ceramic and metal valves in firing engines. SAE paperNo.890177, 1989.
- [45] M. Schreiner, W. Liang, R. Karno et al.: Ceramic valve train materials investigation for advanced industrial natural gas engine. SAE paper No. 870418, 1987.
- [46] P.I. Lacey, S.M. Hsu, R.S. Gates et al.: Wear mechanisms of valves and valve seat inserts in a gas-fired reciprocating engine. NIST Special Publication, NISTIR 90-4246, 1990.
- [47] K.D. Morgenthaler: Ceramics in the automobile. Symposium on Grinding of High-Performance Ceramics, Kaiserslautern, Germany, Oct. 19-20, 1994.
- [48] H. Rodrigues: Sintered valve seat inserts and valve guides: Factors affecting design, performance and machinability. Valve Train System Design and Materials, Materials Park, OH, ASM International, 1997.
- [49] O.O. Popoola, LV. Reatherford, R.C. Mccune: Process and materials development for adherently sprayed valve seats on aluminum engine heads. Journal of Automotive Engineering, 1998, 329, 201-208.
- [50] M. Kano: Wear resistance properties of ion-plated coatings on cam followers. Proceeding of the In¬ernational Tribology Conference, Yokohama, 1995.
- [51] J.E. Clevenger, D.C. Carlson, W.M. Kleiser: The effect of engine oil viscosity and composition on fuel efficiency. SAE paper No. 841389, 1984.
- [52] Y. Waguri, A. Fukushima, T. Kitahara et al.: Jour¬nal of the Japanese Society of Mechanical Engineering, 1993, 59, 218-225.
- [53] M. Uchida, Y. Masuda: Monthly Tribology, 1995, 4, 12-20.
- [54] S. Kennedy, L.D. Moore: Additive effects on lubricant fuel economy. SAE paper No. 872121, 1987.
- [55] L.L.K. Kuo, S.T. Chang, S.K. Hsieh et al.: Fuel economy engine oils via friction modifiers. Lubrication Engineering, 1989, 45(1): 81-98.
- [56] Y. Yamamoto, S. Gondo: Environmental effects on the composition of surface films produced by Organo-Molybdenum compound. Tribology Transactions, 1994,37(1): 182-188.
- [57] T. Kikuchi, Y. Yonekura, K. Akiyama: Frictional characteristics of organomolybdenum compound with addition of sulfurized additives. JSAE, 1995.
- [58] M. Muraki, H. Wada: Frictional properties of organo molybdenum compounds in presence of ZnDTPs under sliding conditions (part 1). J. Jpn. Soc. Tribologists, 1993, 38(10): 919-926.
- [59] Y. Yamamoto, S. Gondo: Tribology Transactions, 1989, 32(2): 251-260.
- [60] M. Thyama, T. Ohmori: Influence of lubricating oil viscosity and friction modifier on engine parts wear. Japanese Journal of Tribology, 1997, 42(11): 1233-1241.
- [61] J. Igarashi, Y. Yamada, M .Ishimaru et al.: Degradation of friction modifiers. Proceeding of Japan International Tribology Conference, Nagoya, 1990, 421-426.
- [62] T. Okamoto, K. Fujita, M. Kawamura: EXAFS and EXANES studies on decomposition of molybdenum O, O-dialkyl phosphorodithioate in commercial engine oils. Bull. Chem. Soc. Jpn., 1988, 6, 916-922.
- [63] K. Akiyama, T. Kikuchi, S. Suglyama et al.: Gaso-line engine oil durability on fuel economy improvement performance. JSAE, 1995.
- [64] K. Aral, M. Yamada, S. Asano et al.: Lubricant technology to enhance the durability of low friction performance of gasoline engine oils. SAE paper No. 952533, 1995, 1964-1972.
- [65] M.D. Johnson, R.K. Jensen, S. Korcek: Base oil effects on friction reducing capabilities of molybdenum dialkyldithiocarbamate containing engine oils. SAE paper No. 972860, 1997, 1054-1064.
- [66] F.A. Davis, T.S. Eyre: The effect of a friction modifier on piston ring and cylinder bore friction and wear. Tribology International, 1990, 23(3): 163-171.
- [67] S.H. Hill, S.C. Tung: Bench wear testing of com-mon gasoline engine cylinder bore surface/piston ring combinations. Tribology Transactions, 1996, 39(4): 929-935.
- [68] L.L. Ting: Development of a reciprocating test rig for tribological studies of piston engine moving components-Part 1: Rig design and piston ring friction coefficient measuring method. SAE paper No. 930685, 1993.
- [69] D.J. Hargreaves et al.: Development of a reciprocating wear test rig and computer program for tribological studies of piston ring-liner contact. Transactions of Mechanical Engineering, IEAust., 1995, ME20(2):99-104.
- [70] S.E. Hartfield, S.C. Tung, C.J. Rivard: Development of a bench wear test for the evaluation of engine cylinder components and the correlation with engine test results. SAE paper No. 932693, 1993, 1131-1138.
- [71] D.J. Patterson, S.H. Hill, S.C. Tung: Bench wear testing of engine power cylinder components. Lubrication Engineering,1993, 2, 89-95.
- [72] M. Balnaves, D. Czarkowski, R. Giannini et al.: Fuel property effects on ring and liner wear rates in a DDC 6V-53T using SLA techniques. SAE paper No. 912326,1991.
- [73] S.G. Pritz, G.R. Cataldi: In situ piston ring wear measurements in a medium-speed diesel engine. Lubrication Engineering, 1990, 6, 365-370.
- [74] N.A. Henein, A. Ma and J.Glidewell: In situ wear measuring technique in engine cylinders. Tribology Transactions, 1998, 41(4): 579-585.
- [75] R. Harari, E. Sher. Measurement of engine friction power by using inertia tests. SAE paper No. 950028, 1995, 16-20.
- [76] N. Koike, Y. Kumagai, K. Nakamura: Development of detection system for abnormal wear of engine bearings. JSAM Reviev., 1998,19, 27-32.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG1-0014-0064