PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Mechanical and Corrosive Wear of Heat Treated Materials and Protection with Coating, an Overview

Autorzy
Identyfikatory
Warianty tytułu
PL
Mechaniczne i korozyjne zużycie materiałów poddanych obróbce cieplnej i ich ochrona za pomocą powłok - przegląd
Języki publikacji
EN
Abstrakty
EN
Many conventional industrial processes for metal making, such as metal forming, heat treatment, machining, etc., involve strong mechanical impact and corrosive environmental effects, resulting in materials failure. Attempted for improvement has been made from heat treating of a variety of materials. In this work, an overview of common mechanical and corrosive wear in mentioned industrial processes is provided. A collection identification, and troubleshooting of common mechanical and corrosive wear will be presented. Discussion will be made on materials, failure analysis, and heat treating processes to illustrate wear mechanisms.
PL
Wiele konwencjonalnych przemysłowych procesów przeróbki metali, takich jak procesy metalurgiczne, obróbka cieplna, obróbka skrawaniem itp. pociąga za sobą silne oddziaływania mechaniczne i wywołuje skutki korozyjne powodujące uszkodzenia materiałów. Próbuje się temu zapobiegać poprzez odpowiednią obróbkę cieplną różnorodnych materiałów. W niniejszej pracy przedstawiono przegląd najbardziej powszechnego mechanicznego i korozyjnego zużycia materiałów w wymienionych procesach produkcyjnych. Przedstawiono wykaz i identyfikację powszechnego mechanicznego i korozyjnego zużycia materiałów oraz sposobów wykrywania usterek powstających z tego powodu. W celu zilustrowania mechanizmów zużycia przedstawiono dyskusję dotyczącą materiałów, analizy uszkodzeń oraz procesów obróbki cieplnej.
Rocznik
Tom
Strony
3--13
Opis fizyczny
rys., tab., bibliogr. 54 poz.
Twórcy
autor
  • University of Alaska Fairbanks, USA
autor
  • University of Alaska Fairbanks, USA
autor
  • Union Carbide Corporation
  • University of Alaska Fairbanks, USA
Bibliografia
  • [1] E. Paul DeGarmo, J. T. Black and Ronald A .Kohser: Materials and Processes in Manufacturing, Ed. Marcia Horton, Pub. Prentice Hall, Upper SaddleRiver, 1997, p 125-628.
  • [2] V.A. Tipnis: Wear Control Handbook, Ed. M.B. Peterson and W.O. Winer. Pub. ASME, New York, 1998.
  • [3] J.A. Schey: Tribology in Metalworking, Pub. ASME, New York, 1983.
  • [4] C. Subramanian and K.N. Stratford, Edi.: Quality Control and Assurance in Advanced Surface Engineering, Institute of Materials, London, 1997.
  • [5] Anon: Metal Handbook, Volume 11, Failure Analysis and Prevention. Pub. American Society for Metals, Metals Park, Ohio, 1996, p. 582.
  • [6] M.B. Karamis: Tribological behavior of plasma nitrided 722M24 material under dry sliding conditions, Wear, Vol 147, 1991, p 385-399.
  • [7] B. Podgornik, J. Vizintin, V. Leskovsek: Wear properties of induction hardened, conventional plasma nitrided and pulse plasma nitrided AISI 4140 steel in dry sliding conditions, Wear, Vol 232, 1999, p 231-242.
  • [8] Y. Sun, T. Bell: Plasma surface engineering of low alloy steel, Mat. Sci. and Eng., Vol A140, 1991, p 419-434.
  • [9] B. Skoric, D. Kakas, T. Gredic: Influence of plasma nitriding on mechanical and tribological properties of steel with subs subsequent PVD surface treatment, Thin Solid Film, Vol 317, 1998, p 486-489.
  • [10] H. Kaufmann, Industrial applications of plasma and ion surface engineering, Surf. and Coat. Tech., Vol 74-75, 1995, p 23-28.
  • [11] K.T. Rie, E. Broszeit: Plasma diffusion treatment and duplex treatment, recent development and new applications, Surf. and Coat. Tech., Vol 76-77, 1995, p 425-436.
  • [12] F. Cellier, and J.F. Nowak: Diamond-like carbon film deposition on plasma nitrided steel substrate, Diam. and Related Mat., Vol 3, 1994, p 1112-1116.
  • [13] J.I. Onate, F. Alonso, and A. Garcia: Improvement of tribological properties by ion implantation, Thin Solid Film, Vol 317, 1998, p 471-476.
  • [14] J. Feugeas, G. Grigioni, G. Sanchez et al.: Wear behavior of steel and titanium treated by pulse ion implantation, Surf. Eng., Vol 14, 1998, p 62-66.
  • [15] V.I. Lavrentiev, and A.D. Pogrebnjak: High-dose ion implantation into metals, Surf. and coat. Tech., Vol 99, 1998, p 24-32.
  • [16] V.I. Lavrentev, and A.D. Pogrebnyak: The effect of ion beams on iron and steel, Metal Phys. Adv. Tech., Vol 16, 1997, p 1233-1265.
  • [17] B. Torp, P. Abrahamsen, K.I. Blomqvist et al.: A new industrial ion implanter for surface modification of metals, Nuclear Instruments and Methods in Physics Research B, Vol 127/128, 1997, p 940-944.
  • [18] F.M. Kustas, M.S. Misra, R. Wei et al.: High temperature nitrogen implantation of Ti-6AI-4V-tribological properties, Surf. and Coat. Tech., Vol 51, 1992, p 106-111.
  • [19] J.S. Sun, P. Yan, X.B. Sun et al.: Tribological properties of nitrogen ion implanted WC-Co, Wear, Vol 213, 1997, p 131-134.
  • [20] K. Nomoto, S. Nishijima, K. Katagiri et al.: Effects of ion implantation and plasma treatment on tribological properties of aluminium and AI-Mg alloy, Surf. and Coat. Tech., Vol 51, 1992, p 157-161.
  • [21] R. Wei: Low energy, high current density ion implantation of materials at elevated temperatures for tribological applications, Surf. and Coat. Tech., Vol 83, 1996, p 218-227.
  • [22] T. Vilaithong, L.D. Yu, P. Vichaisirimongkol et al.: N-ion implantation assisted by preparative and closing implantation for surface modification of tool steel, Nuclear Instruments and Methods in Physics Research B, Vol 148, 1999, p 830-835.
  • [23] W. Ensinger: Modification of mechanical and chemical surface properties of metals by plasma immersion ion implantation, Surf. and Coat. Tech., Vol 100-101, 1998, p 341-352.
  • [24] C. Lawert, A. Weisheit, B.L Mordike et al.: Plasma immersion ion implantation of stainless steel: austenitic stainless steel in comparison to austenitic-ferritic stainless steel, Surf. and Coat. Tech., 1996, 85:15-27.
  • [25] M. Samandi, B.A. Shedden, D.I.Smith et al.: Micro-structure, corrosion and tribological behavior of plasma immersion ion implanted austenitic stainless steel, Surf. and Coat. Tech., Vol 59, 1993, p 261-266.
  • [26] A.M. Zeng, T. Zhang, B.Y. Tang et al.: Improvement of tribological properties of 9Cr18 bearing steel using metal and nitrogen plasma-immersion ion implantation, Surf. and Coat. Tech., Vol 115, 1999, p 234-238.
  • [27] C.A. Straede, J.R. Poulsen, and B.M. Lund, Wear-resistant steel surfaces obtained by high dose implantation of carbon, Mat. Sci. and Eng., Vol A139, 1991, p 150-158.
  • [28] S. Yan, W.J. Zhao, D.M. Ruck et al.: Study of tribological properties of high-speed steel implanted by high-dose carbon ions, Surf. and Coat. Tech., Vol 103-104, 1998, p 348-352.
  • [29] W.L. Lin, X.J. Ding, H.Z. Zhang et al.: Metal vapour vacuum arc source ion implantation as a surface treatment technique for industrial tool bits, Surf. and Coat. Tech., Vol 21,1992, p 534-539.
  • [30] R. Cornelius, M. Samandi, P.J. Evans: Effect of metal vapour vacuum arc ion implantation of aluminium on sliding wear characteristics of Ti-6AI-4V, Surf. Eng„ Vol 14,1998, p 123-129.
  • [31] Y.P. Sharkeev, B.P. Gritsenko, S.V. Fortuna et al.: Modification of metallic materials and hard coatings using metal ion implantation, Vacuum, Vol 52, 1999, p 247-254.
  • [32] F. Brossa, A. Cigada, S. Fare et al.: Tribological behavior of Ti6AI4V modified by surface treatments, J. Mat. Sci.: Mat. in Med., Vol 7,1996, p 471-474.
  • [33] R. Buhl, J.K. Pulker, and E. Moll: TiN coatings on steel, Thin Solid Film, Vol 80, 1981, p 265-270.
  • [34] A.K. Chattopadhyay, and A.B. Chattopadhyay, Wear performance of coated carbide and ceramic tools, Wear, Vol 80,1982, p 239-243.
  • [35] M.J. Park, A. Leyland, and A. Matthews: Corrosion performance of layered coatings produced by physical vapour deposition, Surf. and Coat. Tech., Vol 43/44,1990, p 481-486.
  • [36] C.T. Young, and S. K. Rhee: Wear processes of TiN-coated drills, Proc. ASME/STLE Joint Symp. On Wear of Materials, 1985, p541-550.
  • [37] W.D. Sproul: High rate teactively sputtered TiN coatings on high speed steel drills. Thin Solid Film, Vol126,1985, p 257-263.
  • [38] Z. Palmai, The effect of a non-metallic materials deposit in decreasing the wear of TiN-caoted high speed steel cutting tools, Wear, Vol 95, 1984, p 1-8.
  • [39] F.A. Soliman, and O.A. Abu-Zeid: On the improvement of the performance on high speed steel turninmg tools by TiN coatings, Wear, Vol 119, 1987, p 199-204.
  • [40] H. Randhawa: J. Vacuum Sci. Tech., Vol A4, 1986, p 2755-2760.
  • [41] M.G.Hocking, V.Vasantasree, and P.S.Sidky; Metallic and ceramic coatings: Production, high temperature properties and applications, Pub. Longman, Harlow, UK, p 50-51, 1989.
  • [42] Y.L. Su, J.S. Lin, L.I. Shiau et al.: A tribological investigation of physical vapour deposition TiN coatings paired with surface treated steels for machine element applications, Wear, Vol 167, 1993, p 73-83.
  • [43] G.S. Fox-Rabinovich, A.l. Kovalev, and S.N. Afanasyev: Characteristic features of wear in tools made of high speed steels with surface engineered coatings, Wear, Vol 198,1996, p 280-286.
  • [44] R.L. Deuis, J.M. Yellup, and C. Subramanian: Metal-matrix composite coatings by PTA surfacing, Composites Sci. and Tech., Vol 58, 1998, p 299-309.
  • [45] Y.L. Su, and J.S. Lin: Friction and wear behavior of a number of ceramic-coated steels matched as sliding pairs to various surface-treated steels, Wear, Vol 166, 1993, p 27-35.
  • [46] C. Meneau, P. Andreazza, C. Andreazza-Vignolle et al.: Laser surface modification: structural and tribological studies of AIN coatings, Surf. and Coat. Tech., Vol 100-101, 1998, p 12-16.
  • [47] S.J. Midea and G.D. Pfaffmann, Edi., Heat treating: Including steel heat treating in the new millennium: an International symposium in honor of Professor George Krauss; Proceedings of the 19th conference, 1-4 November 1999, Cincinnati, Ohio; ASM International, Materials Park, OH.
  • [48] E. Jisheng, and D.T. Gawne: Effect of thermochemical treatments on the sliding wear mechanisms of steels under boundary lubrication, Trib. Trans., Vol 42,1999, p 626-632.
  • [49] European Patent (EP O 731 181 A1): Method of preventing abrasion at sliding portion of metal-product.
  • [50] United States Patent (5,798,002): Method of and device for producing carbide and carbon solid solution containing surface layers.
  • [51] United States Patent (5,707,460): Method of producing parts having improved wear, fatigue and corrosion resistance from medium alloy, low carbon steel and parts obtained therefrom.
  • [52] United States Patent (5,753,052): Method of treating ferrous surfaces subjected to high friction strains.
  • [53] International Patent (WO 99/35297): Laser phase transformation and ion implantation in metals.
  • [54] International Patent (WO 99/20086): Process for forming adherent coatings using plasma processing.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG1-0014-0056
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.