PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermodynamic Criteria for Optimization of Work-Assisted and Conventional Drying Operations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work presents thermodynamic criteria for optimization of work-assisted drying operations and compares these criteria with those conventional drying operations in sequential systems. For the work-assisted operations, which run jointly with thermal machines, such as heat pumps, total power input is minimized at constrains which describe dynamics of energy and mass exchange. Finite-rate models take into account irreducible consumption of the classical exergy caused by lossy elements in the system. Optimal work functions, which incorporate a residual entropy production, are found in terms of end states, duration and (in discrete processes) number of stages. Mathematical analogies between entropy production expressions in work-assisted and conventional operations are helpful to formulate optimization criteria of the former.
Twórcy
autor
  • Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, PL-00-645 Warszawa, Poland (Wydział Inżynierii Chemicznej i Procesowej PW)
Bibliografia
  • [1] S. Sieniutycz, Endoreversible modeling and optimization of thermal machines by dynamic programming, chapter 11 in the book: Advance in recent finite time thermodynamics, ed. Ch. Wu, Nova Science, New York 1999.
  • [2] S. Sieniutycz, Z. Szwast, Optimization of mullistage thermal machines by a Pontryagin’s-like discrete maximum principle, chapter 12 in the book: Advance in Recent finite time thermodynamics, ed. Ch. Wu, Nova Science, New York 1999.
  • [3] S. Sieniutycz, Oplimization in process engineering, 1-st edn, Wydawnictwa Naukowo-Techniczne, Warsaw 1978.
  • [4] S. Sieniutycz, A general theory of optimal discrete drying processes with constant hamiltonian, Drying, 84 (1984) 62-75, ed. A. Mujumdar, Hemisphere, New York.
  • [5] Z. Szwast, Discrete algorithms of mazimum principle with constant hamiltonian and their selected applications in chemical engineering, PhD Thesis, Institute of Chemical Engineering at the Warsaw University of Technology, Warsaw 1979.
  • [6] Z. Szwast, Enhanced version of a discrete algorithm for optimization with a constant hamiltonian, Inż. Chem. Proc., 3 (1988) 529-545.
  • [7] Z. Szwast, Exergy optimization in a class of drying systems with granular solids, article in: Pinite-time thermodynamics and thermoeconomics, eds. S. Sieniutycz and P. Salamon. Adv. In Thermodyn., 4 (1990) 209-248, Taylor and Francis, New York.
  • [8] S. Sieniutycz, Z. Szwast, Practice in optimization: process problems, Wydawnictwa Naukowo-Techniczne, Warsaw 1982.
  • [9] S. Sieniutycz, Z. Szwast, A discrete algorithm for optimization with a constant hamiltonian and its application to chemical engineering, Intern. J. Chem. Engng. 23 (1983) 155-166.
  • [10] S. Sieniutycz, Optimal control for multistage endoreversible engines with heat and mass transfer, J. Non-Equilibrium Thermodyn., 24 (1999) 40-74.
  • [11] S. Sieniutycz, Hamilton-Jacobi-Bellman theory of dissipative thermal availability, Physical Review, 56 (1997) 5051-5064.
  • [12] W. Spirkl, H. Ries, Optimal finite-time endoreversible processes, Phys. Rev. E, 52 (1995) 3485-3489; see also: P. Salamon, A. Nitzan, B. Andresen, R. S. Berry, Minimum entropy production and the optimization of heat engines, Phys. Rev. A, 21 (1980) 2115-2129.
  • [13] B. Andresen, J. Gordon, Optimal paths for minimizing entropy production in a common class of finite-time heating and cooling processes, Intern. J. Heat Fluid Flow, 13 (1992) 294-299.
  • [14] B. Andresen, J. Gordon, Optimal heating and cooling strategies for heat exchanger design, J. Appl. Phys., 71 (1992) 76-79.
  • [15] B. Andresen, J. Gordon, Constant thermodynamic speed for minimizing entropy production in thermodynamic processes and simulated annealing, Phys Rev. E., 50 (1994) 4346-4351.
  • [16] B. Andresen, M. H. Rubin, R. S. Berry, Availability for finite time processes. General theory and model, J. Phys. Chem., 87 (1983) 2704-2713.
  • [17] R. S. Berry, Exergy and optimization of lime-constrained processes, Periodica Polytech. Ser. Phys. And Nucl. Sci. 2 (1994) 5-14.
  • [18] D. Tondeur, E. Kvaalen, Equipartition of entropy production: an optimality criterion for transfer and separation processes, Ind. Eng. Chem. Research, 26 (1987) 50-56.
  • [19] K.-H. Hoffmann, Optima and bounds for irreversible thermodynamic processes, article in: Finite-time thermodynamics and thermoeconomics, eds. S. Sieniutycz snd P. Salamon, Advances in Thermodyn., 4 (1990) 22-65, Taylor and Francis, New York.
  • [20] J. Szargut, D. R. Morris, F. R. Steward, Exergy analysis of thermal, chemical and metallurgical processes, Hemisphere, New York 1988.
  • [21] S. Sieniutycz, Computing of thermodynamic functions in gas-moisture-solid systems, Reports of Inst. Chem. Engng., Warsaw Tech. Univ., 2 (1973) 323-349.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG1-0011-0081
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.